斯托克斯定理,de Rham上同调习题

(1) For an orientable manifold M M M with boundary ∂ M \partial M M, show that:
∙ \bullet there is a non-vanishing outer normal vector field N N N on ∂ M \partial M M;
∙ \bullet given an orientation n-form Ω ∈ Λ n ( M ) \Omega\in\Lambda^n(M) ΩΛn(M), the form:
Ω ′ = ( ι N Ω ) ∣ ∂ M , \Omega'=(\iota_N\Omega)|_{\partial M}, Ω=(ιNΩ)M,
is a non-vanishing ( n − 1 ) (n-1) (n1) form on ∂ M \partial M M, which gives an induced orientation on ∂ M \partial M M.

Proof:
Firstly, we need to show a proposition:
For S S S is an immersed hypersurface in M M M, and N N N is a vector field along S S S that is nowhere tangent to S S S. Then S S S has a unique orientation. Also, if ω \omega ω is an orientation form for M M M, then ( ι N ω ) ∣ S (\iota_N\omega)|_S (ιNω)S is an orientation form for S S S.

proof:
Suppose ω \omega ω is an orientation form for M M M, then σ = ( ι N ω ) ∣ S \sigma=(\iota_N\omega)|_S σ=(ιNω)S is an ( n − 1 ) (n-1) (n1)-form on S S S. It follows that it’s an orientation form for S S S is we can show that it never vanishes. Given any basis ( E 1 , … , E n − 1 ) (E_1,\dots,E_{n-1}) (E1,,En1) for T p S T_pS TpS, since N N N is nowhere tangent to S S S implies that ( N p , E 1 , … , E n − 1 ) (N_p,E_1,\dots,E_{n-1}) (Np,E1,,En1) is a basis for T p M T_pM TpM. The fact that ω \omega ω is nonvanishing implies that σ p ( E 1 , … , E n − 1 ) = ω p ( N p , E 1 , … , E n − 1 ) ≠ 0. \sigma_p(E_1,\dots,E_{n-1})=\omega_p(N_p,E_1,\dots,E_{n-1})\neq0. σp(E1,,En1)=ωp(Np,E1,,En1)=0.
Thus the orientation determined by σ \sigma σ is the one defined in the statement of the proposition.
Suppose d i m ( M ) = n dim (M)=n dim(M)=n, and ω \omega ω is an orientation form for M M M, let N N N be a smooth outward-pointing vector field along ∂ M \partial M M. The ( n − 1 ) (n-1) (n1)-form ( ι N ω ) ∣ ∂ M (\iota_N\omega)|_{\partial M} (ιNω)M is an orientation form for ∂ M \partial M M, so ∂ M \partial M M is orientable.

 
 

(2) Show that the Stokes’ theorem is a generalization of the classical Green formula, Gauss formula and Stokes formula in multi-variable calculus.

Proof:
Apply Stokes’ theorem to 1 1 1-form ω = P d x + Q d y \omega=Pdx+Qdy ω=Pdx+Qdy, suppose D D D is a compact regular domain in R 2 \mathbb{R}^2 R2, P , Q P,Q P,Q are smooth real-valued functions on D D D, thus we have Green formula.

Similarly, apply it to 2 2 2-form, ω = P d y ∧ d z + Q d z ∧ d x + R d x ∧ d y \omega=Pdy\wedge dz+Qdz\wedge dx+Rdx\wedge dy ω=Pdydz+Qdzdx+Rdxdy, we have Gauss formula.

And apply it to ω = P d x + Q d y + R d z \omega=Pdx+Qdy+Rdz ω=Pdx+Qdy+Rdz, we have Stokes formula.

 
 

(3) Prove that the pull-back of a smooth map F : M → N F:M\rightarrow N F:MN defines a linear map:
F ∗ : H p ( N ) → H p ( M ) , F^*:H^p(N)\rightarrow H^p(M), F:Hp(N)Hp(M),
which commutes with the wedge product.

Proof:
We set
Z p ( M ) = K e r ( d : Ω p ( M ) → Ω p + 1 ( M ) ) ) = { closed p-forms on  M } , \mathcal{Z}^p(M)=Ker(d:\Omega^p(M)\rightarrow \Omega^{p+1}(M)))=\{\text{closed p-forms on }M\}, Zp(M)=Ker(d:Ωp(M)Ωp+1(M)))={closed p-forms on M},
B p ( M ) = I m ( d : Ω p − 1 ( M ) → Ω p ( M ) ) ) = { exact p-forms on  M } . \mathcal{B}^p(M)=Im(d:\Omega^{p-1}(M)\rightarrow \Omega^{p}(M)))=\{\text{exact p-forms on }M\}. Bp(M)=Im(d:Ωp1(M)Ωp(M)))={exact p-forms on M}.

If ω \omega ω is closed, then d ( F ∗ ω ) = F ∗ ( d ω ) = 0 d(F^*\omega)=F^*(d\omega)=0 d(Fω)=F(dω)=0, so F ∗ ω F^*\omega Fω is also closed. If ω = d η \omega=d\eta ω=dη is exact, then F ∗ ω = F ∗ ( d η ) = d ( F ∗ η ) F^*\omega=F^*(d\eta)=d(F^*\eta) Fω=F(dη)=d(Fη), which is also exact. Therefore, F ∗ F^* F maps Z p ( N ) \mathcal{Z}^p(N) Zp(N) into Z p ( M ) \mathcal{Z}^p(M) Zp(M) and B p ( N ) \mathcal{B}^p(N) Bp(N) into B p ( M ) \mathcal{B}^p(M) Bp(M). The induced cohomology map F ∗ : H p ( N ) → H p ( M ) F^*:H^p(N)\rightarrow H^p(M) F:Hp(N)Hp(M) is defines as follow:
F ∗ [ ω ] = [ F ∗ ω ] . F^*[\omega]=[F^*\omega]. F[ω]=[Fω].
If ω ′ = ω + d η \omega'=\omega+d\eta ω=ω+dη, then [ F ∗ ω ′ ] = [ F ∗ ω + d ( F ∗ η ) ] = [ F ∗ ω ] [F^*\omega']=[F^*\omega+d(F^*\eta)]=[F^*\omega] [Fω]=[Fω+d(Fη)]=[Fω], so this map is well defined.

 
 

(4) Show that the 1 1 1-st de Rham cohomology group of S 1 S^1 S1 is H 1 ( S 1 ) = R H^1(S^1)=\mathbb{R} H1(S1)=R.

Proof:

For any orientation form on S 1 S^1 S1 has nonzero integral, thus d i m H 1 ( S 1 ) ≥ 1 dim H^1(S^1)\geq 1 dimH1(S1)1. On the other hand, there is an injective linear map from H 1 ( S 1 ) H^1(S^1) H1(S1) into H o m ( π 1 ( S 1 , 1 ) , R ) Hom(\pi_1(S^1,1),\mathbb{R}) Hom(π1(S1,1),R), which is 1 1 1-dimensional, thus H 1 ( S 1 ) H^1(S^1) H1(S1) is dimension 1 1 1, and is spanned by the cohomology class of any orientation form, thus H 1 ( S 1 ) = R H^1(S^1)=\mathbb{R} H1(S1)=R.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值