YOLOv8:判断图片jpg数据集和xml标注数据集名字是否一一匹配

YOLOv8

判断图片jpg数据集和xml标注数据集名字是否一一匹配。

图片JPG数据集和xml标注数据集放在同一文件夹下

Python代码:

import os
import shutil

"""
判断图片jpg数据集和xml标注数据集名字是否一一匹配
"""
if __name__ == '__main__':
    # 指定图片和xml文件所在的文件夹路径
    all_path = 'F:\YOLO项目\火灾烟雾\所有数据集'
    
    # 对所有文件名排序:图片jpg+xml文件
    all_files = sorted(os.listdir(all_path))
   
    # 判断图片jpg和xml文件名是否相等
    for i in range(0, len(all_files), 2):
        print(all_files[i].split(".")[0])
        print(all_files[i + 1].split(".")[0])
        if all_files[i].split(".")[0] != all_files[i + 1].split(".")[0]:
            print("图片jpg名和xml文件名不匹配!", all_files[i])
            break

整理不易,关注和收藏后拿走!
欢迎专注我的公众号:AdaCoding 和 Github:AdaCoding123
在这里插入图片描述

### 图像中识别抽烟行为的目标检测方法 对于图像中的抽烟行为检测,主要依赖于目标检测算法来定位并识别图像或视频流中的香烟及其相关特征。这类任务通常涉及两个核心部分:一是构建高质量的数据集;二是选择合适的目标检测框架。 #### 构建数据集 为了实现有效的抽烟行为检测,需要准备专门针对此目的设计的数据集。这些数据集中应包含大量带有标签图片,其中标注了吸烟者手中的香烟位置以及其他可能有助于判断是否正在吸烟的信息。具体来说: - **Pascal VOC格式**用于存储`Annotations`文件夹下的XML文件,描述每张图片内的对象边界框及类别信息[^1]。 - `images`文件夹内放置原始`.jpg`格式的图像样本。 - 对于采用YOLO系列模型的情况,则会额外创建一个名为`labels`的文件夹,里面存放的是按照YOLO协议编写的文本文件(`.txt`),记录着各个实例的位置坐标与所属类别的索引编号。 - 配置文件`data.yaml`定义了整个项目的全局参数设定,比如不同种类之间的映射关系以及各类资源的具体路径指向等重要设置项。 #### 目标检测框架的选择 目前主流的对象检测架构如YOLO (You Only Look Once),因其快速推理速度而被广泛应用于实时应用场景之中。特别是最新版本YOLOv8,在保持原有优势的基础上进一步提升了精度表现,并简化了API接口的设计,使得开发者能够更加便捷地集成到实际项目当中去[^3]。 下面给出一段简单的Python代码片段作为示例,展示如何利用预训练好的YOLOv8权重来进行基本的抽烟行为检测操作: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载官方提供的轻量级网络结构 results = model.predict(source='path_to_your_image_or_video', save=True, imgsz=640) for r in results: boxes = r.boxes.cpu().numpy() for box in boxes: r_class = int(box.cls[0]) if r.names[r_class] == 'cigarette': # 假设已经训练好了一个能区分'cigarette'这个类别的模型 print(f"Detected cigarette at {box.xyxy}") ``` 上述脚本首先导入必要的库函数,接着初始化YOLO模型实例并指定要处理的数据源(可以是单幅静态图象也可以是一段连续摄录下来的动态影像)。之后调用预测方法执行前向传播计算过程得到输出结果列表,最后遍历每一个检测框查看其对应的类别名称是否匹配“cigarette”,一旦发现即打印出相应位置信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值