在激光雷达点云上实现「实时3D目标检测」,德国伊尔梅瑙工业大学做到了

德国伊尔梅瑙工业大学提出Complex-YOLO,首个实时高效的激光雷达点云3D目标检测深度学习模型。该模型扩展YOLOv2,能精确估计笛卡尔空间中的3D立方体,实现在仅基于激光雷达的鸟瞰视图上进行3D多类边界框定位,性能超越现有方法,且无须相机输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


(长按识别上方二维码,报名第29届IEEE IV大会 )

近年来,随着汽车激光雷达传感器的巨大完善,点云处理对自动驾驶而言变得越来越重要。本文首次提出了基于激光雷达的点云3D目标检测的第一个实时高效深度学习模型Complex-YOLO,通过一个特定的复杂的回归策略来估计笛卡尔空间(Cartesian space)中的多类三维立方体,从而扩展YOLOv2(一种用于RGB图像的一个快速二维标准目标检测器),能够精确地估计出三维中不同目标的位置和航向,并可直接在仅基于激光雷达的鸟瞰RGB视图上进行操作,以估计和精确定位3D多类边界框。(后台回复:3D目标检测,获取论文下载链接)


基于激光雷达的三维目标检测对于自动驾驶而言是不可避免的选择,因为它与对环境的理解直接相关,从而为预测和运动规划奠定了基础。对于除了自动化车辆之外的许多其他应用领域,例如增强现实、个人机器人或工业自动化,对实时高度稀疏的三维数据进行推断的能力是一个不合适的问题。我们引入了Complex-YOLO,这是一种最先进的仅针对点云(point clouds)的实时三维目标检测网络。在本研究中,我们描述了一个网络,该网络通过一个特定的复杂的回归策略来估计笛卡尔空间(Cartesian space)中的多类三维立方体,从而扩展YOLOv2(一种用于RGB图像的一个快速二维标准目标检测器)。因此,我们提出了一个特定的Euler区域提议网络(Euler-Region-Proposal Network,E-RPN),通过在回归网络中添加一个虚构的和一个真实的分数来估计目标的姿势。这是在一个封闭的复杂空间中

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值