RNA 32. SCI文章临床多组学肿瘤在线数据挖掘神器(UALCAN)

97f8939e667affefd7e6b525b4fd6e79.gif    

癌症基因组学、转录组学和蛋白质组学分析已经产生了大量的数据,需要开发工具进行分析和传播。我们开发了UALCAN,以提供一个门户,便于探索、分析和可视化这些数据,允许用户集成数据,以更好地了解癌症中受干扰的基因、蛋白质和通路,并做出发现。

UALCAN门户网站能够分析和提供癌症转录组、蛋白质组学和患者生存数据给癌症研究团体。利用从癌症基因组图谱(TCGA)项目获得的数据,UALCAN使用户能够评估蛋白质编码基因的表达及其对33种癌症患者生存的影响。该门户网站自发布以来得到了广泛的使用,并受到了极大的欢迎,100多个国家的癌症研究人员都在使用它。本手稿强调了自2017年发布以来我们对UALCAN所承担的任务和所做的更新。广泛的用户反馈促使我们通过包括以下数据来扩展资源:

a)来自TCGA的microRNAs (miRNAs)、长非编码RNA(lncRNAs)和启动子DNA甲基化;

b)来自临床蛋白质组学肿瘤分析联盟(CPTAC)的基于质谱的蛋白质组学。

UALCAN提供预先计算的、基于肿瘤亚群的基因/蛋白质表达、启动子DNA甲基化状态和Kaplan-Meier生存分析。还提供了新的可视化功能来理解和整合观察结果,并帮助生成用于测试的假设。

UALCAN提供蛋白质表达分析选项,使用来自临床蛋白质组肿瘤分析联盟(CPTAC)和国际癌症蛋白质基因组联盟(ICPC)的数据集。结直肠癌、乳腺癌、卵巢癌、透明细胞肾细胞癌、子宫内膜癌、胃癌、胶质母细胞瘤、小儿脑瘤、头颈部鳞状细胞癌、肺腺癌、肺鳞状细胞癌、肝癌、胰腺癌、前列腺癌等均有蛋白表达。

0c1d91bd0220994e3f7312b41561f3f4.png

602eaec0c0c1157e2ff19034d51dd780.png

1. How to obtain list of top differentally expressed genes?

Step 1: Go to analysis page of UALCAN and choose cancer of interest from left panel by clicking it.

90d8d5b0896e84454b56468cfcfec85a.png

Step 2: UALCAN lists top 250 over-/under-expressed genes in cancer of interest compared to normal samples.

445ac29c4a5556cc55efeb542925796e.png

Step 3: User can analyze gene expression and survival profiles of individual gene by clicking the on the heat map.

3d885d1443eb939cc5f81312a4b117d6.png

Step 4: UALCAN also enables user to view top 250 over-/under-expressed genes in major cancer subtypes compared to normal samples.

f16fe542b336a84008ca7d686231e83b.png

2. How to query UALCAN for gene(s) of interest in specific cancer?

Step 1: Go to analysis page of UALCAN and enter offical symbol of gene(s) in the text area

621b9796af1a5ea63a8eedf31fb333d2.png

Step 2: Choose the TCGA data set of interest from the drop down menu and click "Explore" button to submit.

ba0e1696e957749128674cc28207c077.png

Step 3: Output page provides links to analysis results and external database links.

ec9fb43f10835df34e32ef17596f8dc5.png

a. How to explore expression profile of gene of interest based on clinico-pathologic factors?

Obtaining EZH2 expression profile in breast invasive carcinoma dataset based on patient’s race.

705e28dd696535e09e17dbaa9d3eb518.png

7ffb6c84f3cf5cedcf2054d647fc6420.png

090405f3337dc2b846ef2a2fdc3a7c1e.png

dccb15224a579a683f9c9ed623a5a6e0.png

92283883bf23eb1d0ca1185a91b62a95.png

Downloading the box plot from UALCAN

8a737c74e5a86ade389e43558122718a.png

b. How to obtain Kaplan meier plot from UALCAN?

Analyzing survival plots of EZH2 in breast invasive carcinoma TCGA dataset

1fc3bb62e0a95c45a8568fcacd51a34d.png

c. How to obtain promoter DNA methylation level from UALCAN?

Analyzing promoter DNA methylation level of THSD1 in breast invasive carcinoma TCGA dataset

d7cf9489a65b17f7819726581c1ec294.png

a23fd3eb96b43821c3420eaa6a0caede.png

d. How to obtain list of positive and negatively correlated genes from UALCAN?

Obtaining list of positively/negatively correlated genes of EZH2 in breast invasive carcinoma TCGA dataset

b09d9b5ca9117094b2275ee632618ce3.png

3. How to obtain expression and survival profile for pre-compiled gene classes?

Step 1: Go to analysis page of UALCAN

4723705bf865d0a5a8e0b5c81b1acdbd.png

Step 2: Query UALCAN for pre-compiled gene classes

9ce77e2237a1d69541f295e5233addab.png

Step 3: Select gene class of interest (e.g. Kinase coding genes) and click "Explore" to see results

8a60a2c8ef5511d4ce10439a811917ef.png

Step 4: UALCAN lists all kinase coding genes and indicates their expression status and survival effect in different cancers.

7ce9ba4122809b6f40e17c0ba7b1a143.png

871b6a4c4fdd81598e5b1aedc1fb170f.png

Cancer with red border show up regulation of gene

Step 5: User can click on any of these link to visualize expression and survival profiles

dec3e89d281543fd7e9094d35bf89904.png

Introduction to Cancer terms

CancerTCGA code
Adrenocortical carcinomaACC
Bladder urothelial carcinomaBLCA
Brain lower grade gliomaLGG
Breast invasive carcinomaBRCA
Cervical squamous cell carcinomaCESC
CholangiocarcinomaCHOL
Colon adenocarcinomaCOAD
Esophageal carcinomaESCA
Glioblastoma multiformeGBM
Head and Neck squamous cell carcinomaHNSC
Kidney ChoromophobeKICH
Kidney renal clear cell carcinomaKIRC
Kidney renal papillary cell carcinomaKIRP
Liver hepatocellular carcinomaLIHC
Lung adenocarcinomaLUAD
Lung squamous cell carcinomaLUSC
Lymphoid Neoplasm Diffuse Large B-cell LymphomaDBLC
MesotheliomaMESO
Ovarian serous cystadenocarcinomaOV
Pancreatic adenocarcinomaPAAD
Pheochromocytoma and ParagangliomaPCPG
Prostate adenocarcinomaPRAD
Rectum adenocarcinomaREAD
SarcomaSARC
Skin Cutaneous MelanomaSKCM
Testicular Germ Cell TumorsTGCT
ThymomaTHYM
Thyroid carcinomaTHCA
Uterine CarcinosarcomaUCS
Uterine Corpus Endometrial CarcinomaUCEC
Uveal MelanomaUVM

References:

  1. Zhang, Y., Chen, F., Chandrashekar, D.S., Varambally, S., Creighton, C.J. Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways. Nat Commun 13, 2669 (2022) doi: 10.1038/s41467-022-30342-3

  2. Chen, F., Chandrashekar, D.S., Varambally, S., Creighton, C.J. Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun 10, 5679 (2019) doi:10.1038/s41467-019-13528-0
  3. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, Creighton CJ, Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 2022 Mar;25:18-27. doi: 10.1016/j.neo.2022.01.001  

使用起来还是非常方便,避免了自己写代码,又找数据又作图,有需要的老师可以参考使用!

桓峰基因,铸造成功的您!

未来桓峰基因公众号将不间断的推出转录组系列生信分析教程,

敬请期待!!

有想进生信交流群的老师可以扫最后一个二维码加微信,备注“单位+姓名+目的”,有些想发广告的就免打扰吧,还得费力气把你踢出去!

3be015ddaec9d3551fae3e822cbef89c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值