桓峰基因的教程不但教您怎么使用,还会定期分析一些相关的文章,学会教程只是基础,但是如果把分析结果整合到文章里面才是目的,觉得我们这些教程还不错,并且您按照我们的教程分析出来不错的结果发了文章记得告知我们,并在文章中感谢一下我们哦!
公司英文名称:Kyoho Gene Technology (Beijing) Co.,Ltd.
这期分享一篇2022年发表在Journal of Biomedical Science (IF:11.6),作者基于内皮细胞衰老的生存预测和免疫治疗反应识别转录组学泛癌标志物。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!
摘 要
背景:微血管内皮固有地控制着恶性肿瘤的营养输送、氧气供应和免疫监视,因此代表了癌症的生物学前提和治疗脆弱性。最近,细胞衰老成为实体恶性肿瘤的一个基本特征。特别是,据报道,肿瘤内皮细胞具有衰老相关的分泌表型,其特征是促炎转录程序,最终促进肿瘤生长和远处转移的形成。因此,我们假设肿瘤内皮细胞(TEC)的衰老代表了精确肿瘤学中生存预测和免疫治疗疗效预测的有希望的目标。
方法:在生成泛癌症内皮细胞衰老相关的转录组特征(称为EC)之前,对不同癌症实体的已发表的单细胞RNA测序数据集进行了细胞特异性衰老分析。SENESCENCE.SIG。利用这一特征,采用机器学习算法构建生存预测和免疫治疗反应预测模型。应用基于机器学习的特征选择算法选择关键基因作为预后生物标志物。
结果:我们对已发表的转录组学数据集的分析表明,在多种癌症中,与肿瘤细胞或恶性肿瘤血管室中的其他细胞相比,内皮细胞表现出最高的细胞衰老。基于这些发现,我们开发了一种TEC相关的衰老相关转录组特征(EC.SENESCENCE.SIG),它与促肿瘤信号、促进肿瘤的免疫细胞反应失衡和多种癌症实体中受损的患者生存呈正相关。结合临床患者数据和EC.SENESCENCE.SIG计算的风险评分,构建了一个nomogram模型,提高了临床生存预测的准确性。在临床应用方面,我们确定了三个基因作为生存概率估计的泛癌症生物标志物。从治疗的角度来看,基于EC.SENESCENCE.SIG构建的机器学习模型比先前发表的转录组学模型提供了更好的泛癌症免疫治疗反应预测。
结论:我们在此建立了一个泛癌症转录组特征,用于基于内皮细胞衰老的生存预测和免疫治疗反应预测。
生信分析流程
相关数据集选择:
1. 泛癌scRNAseq数据集:18 单细胞数据集包括15种癌症
ovarian cancer (OV),
pancreatic cancer (PAAD),
prostate cancer (PRAD),
melanoma (SKCM),
stomach cancer (STAD),
ocular melanomas (UVM),
basal-cell carcinoma (BCC),
bladder cancer (BLCA),
breast cancer (BRCA),
colorectal cancer (CRC),
head and neck cancer (HNSC),
kidney clear cell carcinoma (KIRC),
lower grade glioma (LGG),
liver cancer (LIHC),
lung adenocarcinoma (LUAD)
2. 泛癌批量测序数据集
The Cancer Genome Atlas (TCGA)
CGGA (Chinese Glioma Genome Atlas, n=651)
METABRIC (Molecular Taxonomy of Breast Cancer International Consortium,n=1868)
GSE13507 (bladder cancer, n=165),
GSE17538 (colorectal cancer,n=238),
GSE19423 (bladder cancer, n=48),
GSE30219(lung cancer, n=278),
GSE72094 (lung cancer, n=398),
GSE138866 (ovarian Cancer, n=130)
3. 免疫治疗队列
7 melanoma cohorts (Hugo SKCM, Liu SKCM, Gide SKCM, Riaz SKCM, Van SKCM,PUCH SKCM, Auslander SKCM),
2 urothelial carcinoma cohorts (Mariathasan UC, Snyder UC),
1 glioma cohort (Zhao GBM),
1 gastric cancer cohort (Kim GC),
1 lung cancer cohort (Jung NSCLC),
1 renal cell carcinomacohort (Bruan RCC).
基因集选择
免疫基因
生信分析方法:
根据文章的分析流程提取所有的分析内容,整理出来就 13个分析条目,每个条目都包括分析的内容,这些分析构成了整个文章,本文属于单细胞测序生信分析类文章,下面我们就看看哪些分析可以利用桓峰基因公众号的教程来实现,点击分析条码就会跳转到对应公众号的教程,跟着教程做,您也能发轻松发高分,如下:
2. 单细胞数据指控,聚类,差异分析等(Seurat V4.0.6)
4. 合并数据去除批次效应(SVA)
5. GO注释分析(clusterProfiler)
7. 十种机器学习方法构建模型预测免疫监控反应
K-nearest neighbors (KKNN),
AdaBoost Classification Trees (AdaBoost),
Boosted logistic regressions (LogiBoost),
Gradient Boosting Machines(GBM),
Nearest Shrunken Centroids(PAM),
14. 10个队列的nomogram评分预测预后的meta分析
研究结果
1. 评估肿瘤环境中单个细胞类型的衰老状态
统一聚类(UMAP)图显示了来自不同肿瘤实体的5个scRNAseq数据集的聚类和聚类细胞类型注释的集成数据集(A-E,左)。特征图显示假颜色中每个细胞中衰老相关基因集的富集(A-E,中间)。脊图(A-E,右)显示了衰老评分在细胞群中的分布;CAF癌症相关成纤维细胞,TEC肿瘤内皮细胞,HPC肝细胞。
2. 通过泛癌scRNAseq分析肿瘤内皮细胞特异性衰老相关转录组特征的发展
A 圈图显示了EC.SENESCENCE.SIG的生成过程。
B (左)EC.SENESCENCE.SIG基因通路富集分析。条形图中显示了前10个富集的GO项和Reactome途径。B(右)贝壳图显示了这些信号通路的特定基因网络
3. EC.SENESCENCE.SIG的泛癌分析
A TCGA队列中33种癌症类型中EC.SENESCENCE.SIG评分高和低的肿瘤组织之间几种肿瘤促进通路的富集分析,GSEA算法中NES归一化富集评分,FDR错误发现率。
B TCGA泛癌症队列中33种癌症类型患者的EC.SENESCENCE.SIG评分与OS/PFS之间的关系总结。与预后较差(黄色)或较好预后(蓝色)相关的基因表达。
C TCGA队列中33种癌症类型EC.SENESCENCE.SIG评分与免疫浸润(Cibersort)的相关性,蓝点表示负相关,红点表示正相关。
4. 使用EC.SENESCENCE.SIG预测抗pd - l1 /PD-1免疫治疗的结果。
A 泛癌症TCGA队列中每个癌症实体的EC.SENESCENCE.SIG评分与TMB的相关性
B, C 抗pd - l1 /PD-1免疫治疗反应不同的患者EC.SENESCENCE.SIG评分的差异。
D 描述基于机器学习算法的免疫治疗反应预测模型构建的流程图。
E 多接收者工作特征(ROC)图显示验证集中不同机器学习算法的性能。
F ROC图表示最终EC.SENESCENCE.SIG模型在验证集中的性能。
G 热图和H马孔图显示了EC.SENESCENCE.SIG模型和先前发表的泛癌症模型在不同测试集上对抗pd - l1 /PD-1免疫治疗的反应的性能比较。
5. EC.SENESCENCE.SIG相关泛癌模型在TCGA中的预后表现
A, B Kaplan-Meier分析显示TCGA泛癌症培训和测试集患者的风险评分与OS之间存在关联。
C. TCGA泛癌症队列中不同肿瘤分期之间EC.SENESCENCE.SIG相关风险评分的差异。
D 显示了TCGA队列中33种癌症类型中EC.SENESCENCE.SIG相关风险评分与几种肿瘤促进途径富集的相关性。蓝点表示负相关,红点表示正相关。
E-J 多种肿瘤患者EC.SENESCENCE.SIG相关风险评分与OS的相关性显示,BRCA乳腺浸润性癌、CESC宫颈癌、HNSC头颈癌、KIRC肾透明细胞癌、LIHC肝癌、PAAD胰腺癌
6. EC.SENESCENCE.SIG相关泛癌症模型在外部队列中的预后表现
外部队列患者风险评分与OS相关性的A-I Kaplan-Meier分析,给出p值。CGGA中国胶质瘤基因组图谱、乳腺癌国际联盟METABRIC分子分类、BLCA膀胱癌、CRC结肠癌、LUAD肺腺癌、LUSC肺鳞癌、OV卵巢癌、PRAD前列腺癌
6. EC.SENESCENCE.SIG衍生nomogram预测泛癌预后的有效性评价
A 显示了预测TCGA泛癌症队列患者总体生存的nomogram。
B 模型的校准,以确保预测和实际生存之间的一致性显示,45度线代表完美的预测。
C 泛癌症TCGA训练和测试集中不同癌症类型的nomogram score的单变量Cox分析。
D 随时间变化的ROC曲线显示了泛癌症TCGA训练和测试集中EC.SENESCENCE.SIG相关评分和nomogram评分的预后表现。
E 随时间变化的ROC曲线显示了外部队列中EC.SENESCENCE.SIG相关评分和nomogram评分的预后表现。
F 对这10个队列的nomogram评分预测预后的meta分析。
Reference
Wu Z, Uhl B, Gires O, Reichel CA. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J Biomed Sci. 2023;30(1):21. Published 2023 Mar 28. doi:10.1186/s12929-023-00915-5
号外号外,桓峰基因单细胞生信分析免费培训课程即将开始快来报名吧!
单细胞生信分析教程
桓峰基因公众号推出单细胞生信分析教程并配有视频在线教程,目前整理出来的相关教程目录如下:
SCS【4】单细胞转录组数据可视化分析 (Seurat 4.0)
SCS【6】单细胞转录组之细胞类型自动注释 (SingleR)
SCS【7】单细胞转录组之轨迹分析 (Monocle 3) 聚类、分类和计数细胞
SCS【8】单细胞转录组之筛选标记基因 (Monocle 3)
SCS【9】单细胞转录组之构建细胞轨迹 (Monocle 3)
SCS【10】单细胞转录组之差异表达分析 (Monocle 3)
SCS【11】单细胞ATAC-seq 可视化分析 (Cicero)
SCS【12】单细胞转录组之评估不同单细胞亚群的分化潜能 (Cytotrace)
SCS【13】单细胞转录组之识别细胞对“基因集”的响应 (AUCell)
SCS【15】细胞交互:受体-配体及其相互作用的细胞通讯数据库 (CellPhoneDB)
SCS【16】从肿瘤单细胞RNA-Seq数据中推断拷贝数变化 (inferCNV)
SCS【17】从单细胞转录组推断肿瘤的CNV和亚克隆 (copyKAT)
SCS【18】细胞交互:受体-配体及其相互作用的细胞通讯数据库 (iTALK)
SCS【21】单细胞空间转录组可视化 (Seurat V5)
SCS【22】单细胞转录组之 RNA 速度估计 (Velocyto.R)
SCS【24】单细胞数据量化代谢的计算方法 (scMetabolism)
SCS【25】单细胞细胞间通信第一部分细胞通讯可视化(CellChat)
SCS【26】单细胞细胞间通信第二部分通信网络的系统分析(CellChat)
SCS【28】单细胞转录组加权基因共表达网络分析(hdWGCNA)
SCS【29】单细胞基因富集分析 (singleseqgset)
SCS【30】单细胞空间转录组学数据库(STOmics DB)
SCS【31】减少障碍,加速单细胞研究数据库(Single Cell PORTAL)
SCS【32】基于scRNA-seq数据中推断单细胞的eQTLs (eQTLsingle)
SCS【33】单细胞转录之全自动超快速的细胞类型鉴定 (ScType)
SCS【34】单细胞/T细胞/抗体免疫库数据分析(immunarch)
SCS【35】单细胞转录组之去除双细胞 (DoubletFinder)
桓峰基因,铸造成功的您!
未来桓峰基因公众号将不间断的推出单细胞系列生信分析教程,
敬请期待!!
桓峰基因官网正式上线,请大家多多关注,还有很多不足之处,大家多多指正!http://www.kyohogene.com/
桓峰基因和投必得合作,文章润色优惠85折,需要文章润色的老师可以直接到网站输入领取桓峰基因专属优惠券码:KYOHOGENE,然后上传,付款时选择桓峰基因优惠券即可享受85折优惠哦!https://www.topeditsci.com/