IF: 27+多组学分析显示TRAP1/CAMSAP3的细胞在早期子宫内膜癌中的预后

70fdec5131336ab0f4679e8e48d1dde2.png


这期分享一篇2024年6月发表于 Molecular cancer (IF 27+)的文章,作者基于多组学分析显示,具有新型致癌簇TRAP1low/CAMSAP3low的细胞在早期子宫内膜癌中表现出更强的侵袭性行为和更差的预后。

该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!

摘   要

早期子宫内膜癌(EC)的临床异质性值得进一步研究,以确定高质量的预后标志物及其在侵袭性肿瘤行为中的潜在作用。TP53突变被认为是EC改良分子分型中重要的主要分诊指标,但仍不能准确预测EC的预后。通过对24例不同生存结局的早期子宫内膜样EC患者的癌及癌旁组织进行蛋白质组学分析,筛选出13个差异表达蛋白,并通过单细胞转录组(scRNA-seq)进一步鉴定了2个富集于p53信号通路的蛋白。有趣的是,肿瘤坏死因子1型受体相关蛋白(TRAP1)和钙调素调节的谱蛋白相关蛋白家族成员3 (CAMSAP3)在特定细胞簇中被发现显著下调。意料之中的是,TRAP1low/CAMSAP3low集群的特征基因包括经典的癌基因。此外,在系统阐明了TRAP1low/CAMSAP3low与肿瘤微环境(TME)的关系后,我们观察到骨髓细胞与TRAP1low/CAMSAP3low簇之间存在密切的细胞相互作用。免疫组化检测TRAP1和CAMSAP3的表达。因此,我们利用多组学技术构建了一个结合TRAP1、CAMSAP3和TP53的新型预测模型。与曲线下面积相比,对TCGA库EC患者的诊断效能有显著提高。总之,这项工作通过蛋白质组学和scRNA-seq改善了目前关于早期EC预后的知识。这些发现可能会改善早期EC患者的精确风险分层。

38bda56b811b9d24bdf406176917b6a1.png

文章研究思路及流程:

本研究首先使用蛋白质组学比较不同预后的早期子宫内膜癌(EC)患者的蛋白质。LASSO回归法鉴定了13个关键蛋白。经过全面的文献回顾和蛋白质功能预测和分类,我们确定了参与p53信号通路的5个关键蛋白。通过单细胞转录组(scRNA-seq)证实了这些蛋白的表达。细胞亚群之间的相互作用以及TRAP1low/CAMSAP3low簇与肿瘤微环境(TME)之间的细胞间通讯受到了特别的关注。最后,通过免疫组织化学(IHC)和TCGA数据库的数据验证预后蛋白。在此基础上,建立并优化了基于tp53的早期EC预后预测模型。

6375e636c89e499c066c5517a77e6bbc.png

生信分析流程

数据集选择

蛋白组学测序:24个患者

单细胞转录组测序:8人

免疫组学测序:24人

基因组学验证:EC-TCGA 167人

基因集选择

p53信号通路

生信分析方法

根据文章的分析流程提取所有的分析内容,整理出来就10个分析条目,每个条目都包括分析的内容,这些分析构成了整个文章,本文基于单细胞转录组、蛋白质组及基因组分析结合多种实验结果的干湿类文章,下面我们就看看哪些分析可以利用桓峰基因公众号的教程来实现,点击分析条码就会跳转到对应公众号的教程,跟着教程做,您也能发轻松发高分,如下:

单细胞相关分析:

1.单细胞转录组可视化、差异分析(Seurat)

2.单细胞转录组之细胞类型自动注释(SingleR)

3.单细胞细胞间通信第一部分细胞通讯可视化(CellChat)

4.least absolute shrinkage and selection operator(LASSO)

5.绘制 ROC 曲线

6.基因集富集分析(GSEA)

7.KEGG通路富集分析(clusterProfiler)

8.生存分析(Kaplan-Meier)

9.预测模型之接收者操作特征曲线(ROC)

10.绘图相关方法:

散点图 (Scatter)

韦恩图 (Venn)

柱状图 (Barplot)

箱线图 (Boxplot)

折线图 (Lineplot)

直方图 (HistogramPlot)

小提琴图 (ViolinPlot)

相关性矩阵图(Correlation Matrix)

研究结果

1. 早期EC预后蛋白的多组学鉴定及亚型特征的揭示

A 不同组TRAP1、CAMSAP3、NUMA1的ROC曲线。

B 基于GSEA的TRAP1、CAMSAP3和numa1相关信号通路。

C t-SNE图显示重新聚类后上皮类型的聚类。

D 重新聚类后不同亚群顶端基因的热图。

E 小提琴图显示重组后各组中TRAP1、CAMSAP3和NUMA1的平均表达量。

F TRAP1low/CAMSAP3low聚类的GSEA分析。

G TRAP1low/CAMSAP3low簇和免疫亚群的CellChat图。

H 受体配体对TRAP1low/CAMSAP3low簇和免疫细胞的链。

5868b9c5aca153ec49d1c170fff1aa93.png

2. 临床预后蛋白的验证

A 不同预后EC患者癌组织和正常组织中TRAP1、CAMSAP3、NUMA1免疫组化染色代表性图像及不同组预后蛋白表达统计箱图。

B 通过TCGA数据库验证了TRAP1和CAMSAP3在EC早期、晚期和正常患者中的表达。

C 结合TRAP1、CAMSAP3和TP53突变状态预测TCGA EC队列的疾病结局。

D ROC曲线。

b8ff4fd691d17ca2a8db2570f38523aa.png

3. 用蛋白质组学筛选预后相关蛋白

A 生存患者肿瘤局灶与癌旁组织、死亡患者肿瘤局灶与癌旁组织、生存患者肿瘤局灶与死亡患者肿瘤局灶组织的火山图。

B KEGG通路差异蛋白富集分析。

C 三组差异蛋白相交的维恩图。

D 差异蛋白的LASSO回归分析得出预后相关蛋白及其在不同亚组中的表达。

E 预后相关蛋白在不同亚组中的表达变化。

F 不同组预后相关蛋白的ROC曲线。

G COX4I1和UBL5相关信号通路的GSEA分析。

62f0613b6f939e3dd85bf9e899351574.png

4. 在转录组水平上分析预后蛋白的衍生细胞亚群

A 5例患者(8个样本)的t-SNE图。

B 主要细胞类型典型标记的t-SNE图。

C 以上5种细胞类型典型标记基因的表达水平。

D Venn图显示了存活患者肿瘤局灶组织和癌旁组织中蛋白质组学鉴定的p53信号通路相关蛋白与scRNA-seq差异基因之间的交叉。

E 条形图显示3个基因在不同细胞类型中的表达。

F 柱状图显示每个样本中主要细胞类型的相对比例。

G t-SNE图显示上皮细胞聚集。

H 不同细胞群上皮细胞的Top基因。

I 上皮细胞典型标记的t-SNE图。

e02bb03b5aa4f1d386764e4ab6bbff36.png

5. 靶蛋白在亚群中的表达

A 小提琴图显示不同簇的平均基因表达在所有的非接合上皮细胞中。

B tSNE图为肿瘤和正常标本中除纤毛上皮细胞外的上皮细胞分布。

C 上皮亚型典型标记的t-SNE图。

D 腺细胞和腔细胞的GSEA分析。

5950de284c6ef5669fc7a70b00431350.png

6. 髓细胞,特别是巨噬细胞与TRAP1low/CAMSAP3low簇密切相互作用

A 不同细胞类型间细胞间通讯的CellChat图。

B 免疫细胞的 t-NSE图显示其主要细胞类型。

C 免疫细胞不同细胞亚群中的Top基因。

D 免疫细胞各亚群细胞标记物的表达。

E 骨髓细胞的t-NSE图。

F 骨髓细胞中不同亚群细胞标志物的表达。

G 不同骨髓细胞群的Top基因。

H TRAP1low/CAMSAP3low簇和髓细胞的CellChat图。

I 气泡图显示受体-配体对在TRAP1low/CAMSAP3low簇和髓细胞中的表达。

ce1e64300a8140e2eeebec809e681aa4.png

7. TCGA队列中TRAP1、CAMSAP3和TP53联合突变状态的生存曲线

69fce167110d67e1b348503c7b9723d2.png

Reference

Mao X, Tang X, Ye J, et al. Multi-omics profiling reveal cells with novel oncogenic cluster, TRAP1low/CAMSAP3low, emerge more aggressive behavior and poor-prognosis in early-stage endometrial cancer. Mol Cancer. 2024;23(1):127.

桓峰基因,铸造成功的您!

未来桓峰基因公众号将不间断的推出各种系列生信分析教程,

敬请期待!!

桓峰基因官网正式上线,请大家多多关注,还有很多不足之处,大家多多指正!http://www.kyohogene.com/

桓峰基因和投必得合作,文章润色优惠85折,需要文章润色的老师可以直接到网站输入领取桓峰基因专属优惠券码:KYOHOGENE,然后上传,付款时选择桓峰基因优惠券即可享受85折优惠哦!https://www.topeditsci.com/

4650dd785e0b2ef1838fe86992266ee0.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值