前言
本征是什么?
满足
A
α
=
λ
α
A\alpha = \lambda \alpha
Aα=λα的就是本征,其中A是映射/线性运算符,
α
\alpha
α是本征矢量(特征矢量),
λ
\lambda
λ是本征值(特征值)
本
征
方
程
:
∂
y
∂
x
=
P
y
本征方程:\frac{\partial y}{\partial x} =Py
本征方程:∂x∂y=Py
物理学中出现了矢量,而本征和矢量有关,所以物理学很多方程都能化成本征形式。能化成本征形式的运算,说明是线性的,对加法和数乘封闭,即加和数乘运算中的所有数都在运算的线性空间里。
上一篇动力学变量里,并没有怎么求运算符的本征右矢量、本征值的方法,虽然说类似矩阵分析,但是毕竟有左右矢量之分,还是不同的,所以解法也会有所差异。
可观测量
实动力学变量
任何可以观测到的动力学变量都是实数。
无法通过两次测量得到实部的动力学变量和虚部的动力学变量,从而得到复的动力学变量。
——因为无法观测两次
如果两次是严格同时的,那么这实际上还是一次。如果是相继观测的,那么前一次观测会给第二次观测带来不确定性。
\;
\;
\;
什么是可观测量
满足下面条件的线性运算符 ξ \xi ξ就是可观测量:
∣ P ⟩ = ∫ ∣ γ 1 c ⟩ d γ 1 + ∑ r ∣ γ r d ⟩ ( 1 ) |P\rangle=\int |\gamma_1c\rangle \;d\gamma_1 + \sum_r |\gamma_r \;d\rangle \qquad \qquad (1) ∣P⟩=∫∣γ1c⟩dγ1+r∑∣γrd⟩(1)
∣
γ
1
c
⟩
=
∣
γ
1
⟩
|\gamma_1c\rangle = |\gamma_1\rangle
∣γ1c⟩=∣γ1⟩
∣
γ
r
d
⟩
=
∣
γ
r
⟩
|\gamma_r d\rangle = |\gamma_r \rangle
∣γrd⟩=∣γr⟩
其中 c , d c,d c,d只是记号,为了在 γ 1 = γ r \gamma_1 = \gamma_r γ1=γr时区分两个右矢量。
\;
\;
\;
( 1 ) (1) (1)公式表明:
任何右矢量 ∣ P ⟩ |P\rangle ∣P⟩都可以表示为线性运算符 ξ \xi ξ本征右矢量积分加上本征右矢量的求和。
什么意思,上一篇明明只有求和???
因为有这么一种情况,线性运算符 ξ \xi ξ的本征值 γ \gamma γ是由一个范围的数 + 范围外的分立的数组成。
方程扩展了,包含更多的情况,也就多了一项。
\;
\;
\;
可观测量确定系统的态
实动力学变量 ξ \xi ξ是个可观测量,有有限个本征值 γ 1 , γ 2 , . . . , γ n \gamma_1,\gamma_2,...,\gamma_n γ1,γ2,...,γn,则
( ξ − γ 1 ) ( ξ − γ 2 ) . . . . ( ξ − γ n ) ⋅ ∣ P ⟩ = 0 (\xi - \gamma _ 1)(\xi - \gamma _ 2)....(\xi - \gamma _ n) · |P\rangle=0 (ξ−γ1)(ξ−γ2)....(ξ−γn)⋅∣P⟩=0
方程对所有 ∣ P ⟩ |P\rangle ∣P⟩成立(我也不知道为什么),所以
( ξ − γ 1 ) ( ξ − γ 2 ) . . . . ( ξ − γ n ) = 0 (\xi - \gamma _ 1)(\xi - \gamma _ 2)....(\xi - \gamma _ n)=0 (ξ−γ1)(ξ−γ2)....(ξ−γn)=0
\;
\;
例如,对于线性运算符 ∣ A ⟩ ⟨ A ∣ |A\rangle\langle A| ∣A⟩⟨A∣, ∣ A ⟩ |A\rangle ∣A⟩是归一化了的右矢量, ⟨ A ∣ A ⟩ = 1 \langle A|A\rangle = 1 ⟨A∣A⟩=1,有
{
∣
A
⟩
⟨
A
∣
}
2
=
∣
A
⟩
⟨
A
∣
A
⟩
⟨
A
∣
=
∣
A
⟩
⟨
A
∣
\{ |A\rangle\langle A| \}^2 = |A\rangle\langle A|A\rangle\langle A| = |A\rangle\langle A|
{∣A⟩⟨A∣}2=∣A⟩⟨A∣A⟩⟨A∣=∣A⟩⟨A∣
(
∣
A
⟩
⟨
A
∣
−
0
)
(
∣
A
⟩
⟨
A
∣
−
1
)
=
0
(|A\rangle\langle A| - 0)(|A\rangle\langle A| - 1)=0
(∣A⟩⟨A∣−0)(∣A⟩⟨A∣−1)=0
因为,线性运算符 ∣ A ⟩ ⟨ A ∣ |A\rangle\langle A| ∣A⟩⟨A∣满足一个代数方程,也是可观测量。她的本征值为0,1。 ∣ A ⟩ |A\rangle ∣A⟩是本征值1的本征右矢量,与 ∣ A ⟩ |A\rangle ∣A⟩正交的本征右矢量都是属于0的本征右矢量。
所以,如果系统处于 ∣ A ⟩ |A\rangle ∣A⟩的态,测量肯定能得到1的结果。
如果系统处于与 ∣ A ⟩ |A\rangle ∣A⟩正交的态,测量肯定得到0的结果。
\;
\;
积分有意义的条件
略
(书上这个地方推导看不懂)
\;
\;
\;
可观测量的函数
可观测量 ξ \xi ξ的任意实函数 f ( ξ ) f(\xi) f(ξ),当做是新的可观测量,当测量 ξ \xi ξ时,也就测量了 f ( ξ ) f(\xi) f(ξ)
我们限制可观测量 ξ \xi ξ必须是实动力学变量,但是不必限制 f ( ξ ) f(\xi) f(ξ)是实的!!!
f ( ξ ) f(\xi) f(ξ)(可以)是复函数
当测量 ξ \xi ξ得到结果 γ \gamma γ时,同时就测量了 f ( ξ ) f(\xi) f(ξ)的实部和虚部,得到了结果为 f ( γ ) f(\gamma) f(γ)的实部和虚部
ξ \xi ξ是线性运算符, f ( ξ ) f(\xi) f(ξ)也是线性运算符,则
f ( ξ ) ∣ γ ⟩ = f ( γ ) ∣ γ ⟩ ( 1 ) f(\xi) | \gamma \rangle = f(\gamma) |\gamma \rangle \qquad\qquad\qquad\qquad\qquad (1) f(ξ)∣γ⟩=f(γ)∣γ⟩(1)
测量的结果是本征值, f ( γ ) f(\gamma) f(γ)是数,但 f ( ξ ) f(\xi) f(ξ)是线性运算符,也就是说 ξ \xi ξ也不是数,是一种关系。
(1)乘以任意右矢量为
f ( ξ ) ∣ P ⟩ = ∫ f ( γ ) ∣ γ c ⟩ d γ + ∑ r f ( γ r ) ∣ γ r d ⟩ ( 2 ) f(\xi)|P\rangle = \int f(\gamma) |\gamma \;c\rangle d \gamma + \sum_r f(\gamma _r)|\gamma_r \; d\rangle \qquad\qquad (2) f(ξ)∣P⟩=∫f(γ)∣γc⟩dγ+r∑f(γr)∣γrd⟩(2)
由(1)左右求共轭,得到 f ( ξ ) f(\xi) f(ξ)的共轭 f ( ξ ) ‾ \overline{f(\xi)} f(ξ)
⟨ γ ∣ f ( ξ ) ‾ = f ‾ ( γ ) ⟨ γ ∣ ( 3 ) \langle \gamma | \overline{f(\xi)} = \overline{f}(\gamma)\langle \gamma | \qquad\qquad (3) ⟨γ∣f(ξ)=f(γ)⟨γ∣(3)
共
轭
关
系
(
线
性
运
算
符
)
:
f
(
ξ
)
⇔
f
(
ξ
)
‾
共轭关系(线性运算符): f(\xi) \Leftrightarrow \overline{f(\xi)}
共轭关系(线性运算符):f(ξ)⇔f(ξ)
共
轭
关
系
(
数
)
:
f
(
γ
)
⇔
f
‾
(
γ
)
共轭关系(数): f(\gamma) \Leftrightarrow \overline{f} (\gamma)
共轭关系(数):f(γ)⇔f(γ)
经过一通推导——把(3)中的 γ \gamma γ缓成 γ 2 \gamma_2 γ2,再在(3)左右右乘 ∣ P ⟩ |P\rangle ∣P⟩,结合(2)可推导出
f ( ξ ) ‾ = f ‾ ( ξ ) \overline{f(\xi)} = \overline{f}(\xi) f(ξ)=f(ξ)
f ( ξ ) 的 共 轭 是 ξ 的 共 轭 复 函 数 f ‾ f(\xi)的共轭是\xi的共轭复函数\overline{f} f(ξ)的共轭是ξ的共轭复函数f
\;
\;
\;
可观测量的倒数
α \alpha α如果没有为0的本征值,那么其倒数可以表示为 α − 1 或 1 / α \alpha ^ {-1}或 1/\alpha α−1或1/α
α − 1 ∣ β ⟩ = β − 1 ∣ β ⟩ \alpha ^ {-1}| \beta \rangle = \beta ^{-1} |\beta \rangle α−1∣β⟩=β−1∣β⟩
其中 ∣ β ⟩ |\beta\rangle ∣β⟩是 α \alpha α的本征态
式子两边乘以 α \alpha α为
α α − 1 ∣ β ⟩ = α β − 1 ∣ β ⟩ \alpha\alpha ^ {-1}| \beta \rangle =\alpha \beta ^{-1} |\beta \rangle αα−1∣β⟩=αβ−1∣β⟩
右边 α β − 1 = 1 \alpha \beta ^{-1}=1 αβ−1=1,因为 α \alpha α是线性运算符,而 β \beta β是其对应的本征值,所以 α β − 1 = 1 \alpha \beta ^{-1}=1 αβ−1=1
比如 A α = λ α A\alpha = \lambda \alpha Aα=λα,两边都成上 λ − 1 \lambda ^{-1} λ−1后,得到 A λ − 1 = 1 A\lambda^{-1}=1 Aλ−1=1
α α − 1 = 1 = α − 1 α \alpha \alpha ^{-1} = 1 = \alpha ^{-1} \alpha αα−1=1=α−1α
综上,有乘法法则如下
( α β γ . . . ) − 1 = . . . γ − 1 β − 1 α − 1 (\alpha \beta \gamma ...)^{-1} = ... \gamma^{-1} \beta^{-1} \alpha^{-1} (αβγ...)−1=...γ−1β−1α−1
\;
\;
\;
可观测量的平方根
可观测量的平方根始终存在,当她没有负的本征值的时候,她的平方根就是实数的。
α ∣ β ⟩ = ± β ∣ β ⟩ \sqrt{ \alpha }| \beta \rangle = \pm \sqrt{ \beta } |\beta \rangle α∣β⟩=±β∣β⟩
可推导出
α
α
=
1
\sqrt{\alpha}\sqrt{\alpha}=1
αα=1
由于第一个方程的正负性,会有很大平方根。为了固定其中某个,必须为方程的每个本征值确定一个具体的符号。
这个符号可能从一个本征值到另一个本征值,不规则地变化。
\;
\;
一个可观测量的不同的平方根有 2 n 2^n 2n个,非零的本征值有 n n n个。
平方根函数仅仅用于那些没用负本征值的可观测量,所以平方根总是取正的。
\;
\;
\;
物理解释
有这样一个可观测量 ξ \xi ξ,她有任意两个状态 x , y x,y x,y,她们分别对应矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x|和|y\rangle ⟨x∣和∣y⟩,组合成一个数
⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle ⟨x∣ξ∣y⟩
这个数与经典理论中的数不同,因为
- 通常这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle ⟨x∣ξ∣y⟩不是实数,而经典理论中测量的数都是实数
- 这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle ⟨x∣ξ∣y⟩与系统两个态有关,而经典理论只与一个数有关
- 这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle ⟨x∣ξ∣y⟩不能由可观测量 ξ \xi ξ与态唯一确定,因为两个矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x |和 | y \rangle ⟨x∣和∣y⟩包含任意的数值因子,就算归一化了,还是有一个模为1的时间因子 e − i E n t / ℏ e^{-iE_nt / \hbar} e−iEnt/ℏ
当两个矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x|和|y\rangle ⟨x∣和∣y⟩互为共轭的时候,数为 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi|x \rangle ⟨x∣ξ∣x⟩必定是实数!能够当 ⟨ x ∣ \langle x | ⟨x∣归一化后,被唯一确定!!!
因为当用因子 e i c e^{ic} eic乘上 ⟨ x ∣ \langle x | ⟨x∣,就必须用因子 e − i c e^{-ic} e−ic乘上 ∣ x ⟩ | x \rangle ∣x⟩,这样数还是不变!!!(其中c是实数, c = E n t ℏ c = \frac{E_nt }{\hbar} c=ℏEnt)
\;
\;
\;
\;
⟨
x
∣
ξ
∣
x
⟩
+
⟨
x
∣
η
∣
x
⟩
=
⟨
x
∣
ξ
+
η
∣
x
⟩
\langle x|\xi | x\rangle + \langle x|\eta | x\rangle = \langle x|\xi + \eta| x\rangle
⟨x∣ξ∣x⟩+⟨x∣η∣x⟩=⟨x∣ξ+η∣x⟩
⟨
x
∣
ξ
∣
x
⟩
∗
⟨
x
∣
η
∣
x
⟩
≠
⟨
x
∣
ξ
∗
η
∣
x
⟩
\langle x|\xi | x\rangle * \langle x|\eta | x\rangle \ne \langle x|\xi * \eta| x\rangle
⟨x∣ξ∣x⟩∗⟨x∣η∣x⟩=⟨x∣ξ∗η∣x⟩
\;
\;
对于
∣
x
⟩
|x\rangle
∣x⟩的态的系统,测量许多次
ξ
\xi
ξ ——
-
当 ∣ x ⟩ |x\rangle ∣x⟩没有归一化时,测量 ξ \xi ξ的结果 γ \gamma γ正比于 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi|x \rangle ⟨x∣ξ∣x⟩
-
当 ∣ x ⟩ |x\rangle ∣x⟩有归一化时,多次测量 ξ \xi ξ的结果 γ \gamma γ的平均值为 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi | x\rangle ⟨x∣ξ∣x⟩
一般,我们不能说可观测量对某一个定态有一个值,但可以说可观测量对这个态有一个平均值!
可观测量对这个态有一个确定的概率
\;
\;
\;
概率
一个可观测量 ξ \xi ξ对应一个归一化了的右矢量 ∣ x ⟩ |x\rangle ∣x⟩,那么
ξ
\xi
ξ的平均值为
⟨
x
∣
ξ
∣
x
⟩
\langle x|\xi|x \rangle
⟨x∣ξ∣x⟩,
f
(
ξ
)
f(\xi)
f(ξ)的平均值为
⟨
x
∣
f
(
ξ
)
∣
x
⟩
\langle x| f(\xi) |x \rangle
⟨x∣f(ξ)∣x⟩
令函数
f
(
ξ
)
f(\xi)
f(ξ)是这样的函数,即在
ξ
=
a
\xi = a
ξ=a时,
f
(
ξ
)
=
1
f(\xi)=1
f(ξ)=1,其他情况为零
——竟然是个冲激函数!!!
记做 δ ξ a \;\;\;\delta_{\xi a}\quad δξa 这个 ξ \xi ξ的函数的平均值恰好是 ξ \xi ξ取a的概率,为
P a = ⟨ x ∣ δ ξ a ∣ x ⟩ ( 1 ) P_a = \langle x | \delta _{\xi a} | x \rangle \qquad \qquad \qquad \qquad \;\;\;\; (1) Pa=⟨x∣δξa∣x⟩(1)
ξ \xi ξ在很小的范围内 a → a + d a a \rightarrow a+da a→a+da的概率为
P ( a ) d a = ⟨ x ∣ X ( ξ ) ∣ x ⟩ ⟩ ( 2 ) P(a)da = \langle x|X(\xi)|x \rangle \rangle \qquad \qquad \qquad (2) P(a)da=⟨x∣X(ξ)∣x⟩⟩(2)
如果这个范围内没有 ξ \xi ξ的任何本征值,那么有 X ( ξ ) = 0 , P ( a ) = 0 X(\xi)=0,P(a)=0 X(ξ)=0,P(a)=0
如果
∣
x
⟩
|x\rangle
∣x⟩没有归一化,那么(1)右边还是正比于
x
i
xi
xi取a的概率,(2)右边还是正比于
x
i
xi
xi在
a
→
a
+
d
a
a\rightarrow a+da
a→a+da之间的概率。
\;
本征态
(1)如果系统处于 ξ \xi ξ的本征态,属于本征值 γ \gamma γ,则测量 ξ \xi ξ必定得到结果为 γ \gamma γ
(2)如果 ∣ γ ⟩ | \gamma \rangle ∣γ⟩是 ξ \xi ξ的本征右矢量,属于本征值 γ \gamma γ。那么
\;\;\;\;\;\;\;\; ①当 ξ \xi ξ有离散本征值的情况下, δ ξ a ∣ γ ⟩ = 0 , ( γ ≠ a ) \delta_{\xi a} |\gamma \rangle = 0,(\gamma \ne a) δξa∣γ⟩=0,(γ=a)
\;\;\;\;\;\;\;\; ②当 ξ \xi ξ有连续本征值的情况下, X ( ξ ) ∣ γ ⟩ = 0 , ( γ ∉ [ a , a + d a ] ) X(\xi) |\gamma \rangle = 0,(\gamma \notin [ a, a+da]) X(ξ)∣γ⟩=0,(γ∈/[a,a+da])
\;\;\;\;\;\;\;\; 无论是①还是②,对于 ∣ γ ⟩ |\gamma\rangle ∣γ⟩的态, γ \gamma γ肯定是 ξ \xi ξ的结果, ξ \xi ξ肯定是 γ \gamma γ的值
\;
\;
现实世界, ξ \xi ξ只能处于 γ \gamma γ附近的一个很窄的区域, ξ \xi ξ不能精确等于 γ \gamma γ,此时系统处于接近与 ξ \xi ξ本征态的态!!!
一个本征态 ∣ γ ⟩ |\gamma\rangle ∣γ⟩属于连续区域内的某一个本征值 γ \gamma γ,这只是数学的理想化
那些无法实现的态对应的右矢量,长度无穷大。
所有能实现的态,都对应于那些可以归一化的右矢量,这些右矢量构成一个Hilbert空间
\;
\;
\;
\;
\;
\;