【狄拉克量子力学原理】【3】可观测量,什么是本征(特征),可观测量对态的概率

本文介绍了量子力学中的本征概念,包括本征矢量和本征值,以及它们在物理方程中的应用。本征方程和线性运算符的关系被详细阐述,强调了线性运算符可以被化为本征形式。此外,文章讨论了可观测量的定义,指出可观测量必须满足的条件,并探讨了如何将动力学变量表示为实数。还涉及了可观测量的函数、倒数和平方根,以及它们的物理意义。最后,解释了概率和本征态的概念,讨论了测量结果与系统状态的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本征是什么?
满足 A α = λ α A\alpha = \lambda \alpha Aα=λα的就是本征,其中A是映射/线性运算符, α \alpha α是本征矢量(特征矢量), λ \lambda λ是本征值(特征值)
本 征 方 程 : ∂ y ∂ x = P y 本征方程:\frac{\partial y}{\partial x} =Py xy=Py

物理学中出现了矢量,而本征和矢量有关,所以物理学很多方程都能化成本征形式。能化成本征形式的运算,说明是线性的,对加法和数乘封闭,即加和数乘运算中的所有数都在运算的线性空间里。

上一篇动力学变量里,并没有怎么求运算符的本征右矢量、本征值的方法,虽然说类似矩阵分析,但是毕竟有左右矢量之分,还是不同的,所以解法也会有所差异。


可观测量

实动力学变量

任何可以观测到的动力学变量都是实数。

无法通过两次测量得到实部的动力学变量和虚部的动力学变量,从而得到复的动力学变量。
——因为无法观测两次

如果两次是严格同时的,那么这实际上还是一次。如果是相继观测的,那么前一次观测会给第二次观测带来不确定性。

   \;
   \;
   \;

什么是可观测量

满足下面条件的线性运算符 ξ \xi ξ就是可观测量:

∣ P ⟩ = ∫ ∣ γ 1 c ⟩    d γ 1 + ∑ r ∣ γ r    d ⟩ ( 1 ) |P\rangle=\int |\gamma_1c\rangle \;d\gamma_1 + \sum_r |\gamma_r \;d\rangle \qquad \qquad (1) P=γ1cdγ1+rγrd(1)

∣ γ 1 c ⟩ = ∣ γ 1 ⟩ |\gamma_1c\rangle = |\gamma_1\rangle γ1c=γ1
∣ γ r d ⟩ = ∣ γ r ⟩ |\gamma_r d\rangle = |\gamma_r \rangle γrd=γr

其中 c , d c,d c,d只是记号,为了在 γ 1 = γ r \gamma_1 = \gamma_r γ1=γr时区分两个右矢量。

   \;
   \;
   \;

( 1 ) (1) (1)公式表明:

任何右矢量 ∣ P ⟩ |P\rangle P都可以表示为线性运算符 ξ \xi ξ本征右矢量积分加上本征右矢量的求和。

什么意思,上一篇明明只有求和???

因为有这么一种情况,线性运算符 ξ \xi ξ的本征值 γ \gamma γ是由一个范围的数 + 范围外的分立的数组成。

方程扩展了,包含更多的情况,也就多了一项。
   \;
   \;
   \;

可观测量确定系统的态

实动力学变量 ξ \xi ξ是个可观测量,有有限个本征值 γ 1 , γ 2 , . . . , γ n \gamma_1,\gamma_2,...,\gamma_n γ1,γ2,...,γn,则

( ξ − γ 1 ) ( ξ − γ 2 ) . . . . ( ξ − γ n ) ⋅ ∣ P ⟩ = 0 (\xi - \gamma _ 1)(\xi - \gamma _ 2)....(\xi - \gamma _ n) · |P\rangle=0 (ξγ1)(ξγ2)....(ξγn)P=0

方程对所有 ∣ P ⟩ |P\rangle P成立(我也不知道为什么),所以

( ξ − γ 1 ) ( ξ − γ 2 ) . . . . ( ξ − γ n ) = 0 (\xi - \gamma _ 1)(\xi - \gamma _ 2)....(\xi - \gamma _ n)=0 (ξγ1)(ξγ2)....(ξγn)=0

   \;
   \;

例如,对于线性运算符 ∣ A ⟩ ⟨ A ∣ |A\rangle\langle A| AA ∣ A ⟩ |A\rangle A是归一化了的右矢量, ⟨ A ∣ A ⟩ = 1 \langle A|A\rangle = 1 AA=1,有

{ ∣ A ⟩ ⟨ A ∣ } 2 = ∣ A ⟩ ⟨ A ∣ A ⟩ ⟨ A ∣ = ∣ A ⟩ ⟨ A ∣ \{ |A\rangle\langle A| \}^2 = |A\rangle\langle A|A\rangle\langle A| = |A\rangle\langle A| {AA}2=AAAA=AA
( ∣ A ⟩ ⟨ A ∣ − 0 ) ( ∣ A ⟩ ⟨ A ∣ − 1 ) = 0 (|A\rangle\langle A| - 0)(|A\rangle\langle A| - 1)=0 (AA0)(AA1)=0

因为,线性运算符 ∣ A ⟩ ⟨ A ∣ |A\rangle\langle A| AA满足一个代数方程,也是可观测量。她的本征值为0,1。 ∣ A ⟩ |A\rangle A是本征值1的本征右矢量,与 ∣ A ⟩ |A\rangle A正交的本征右矢量都是属于0的本征右矢量。

所以,如果系统处于 ∣ A ⟩ |A\rangle A的态,测量肯定能得到1的结果。

如果系统处于与 ∣ A ⟩ |A\rangle A正交的态,测量肯定得到0的结果。

   \;
   \;

积分有意义的条件


(书上这个地方推导看不懂)

   \;
   \;
   \;

可观测量的函数

可观测量 ξ \xi ξ的任意实函数 f ( ξ ) f(\xi) f(ξ),当做是新的可观测量,当测量 ξ \xi ξ时,也就测量了 f ( ξ ) f(\xi) f(ξ)

我们限制可观测量 ξ \xi ξ必须是实动力学变量,但是不必限制 f ( ξ ) f(\xi) f(ξ)是实的!!!

f ( ξ ) f(\xi) f(ξ)(可以)是复函数

当测量 ξ \xi ξ得到结果 γ \gamma γ时,同时就测量了 f ( ξ ) f(\xi) f(ξ)的实部和虚部,得到了结果为 f ( γ ) f(\gamma) f(γ)的实部和虚部

ξ \xi ξ是线性运算符, f ( ξ ) f(\xi) f(ξ)也是线性运算符,则

f ( ξ ) ∣ γ ⟩ = f ( γ ) ∣ γ ⟩ ( 1 ) f(\xi) | \gamma \rangle = f(\gamma) |\gamma \rangle \qquad\qquad\qquad\qquad\qquad (1) f(ξ)γ=f(γ)γ(1)

测量的结果是本征值, f ( γ ) f(\gamma) f(γ)是数,但 f ( ξ ) f(\xi) f(ξ)是线性运算符,也就是说 ξ \xi ξ也不是数,是一种关系。

(1)乘以任意右矢量为

f ( ξ ) ∣ P ⟩ = ∫ f ( γ ) ∣ γ    c ⟩ d γ + ∑ r f ( γ r ) ∣ γ r    d ⟩ ( 2 ) f(\xi)|P\rangle = \int f(\gamma) |\gamma \;c\rangle d \gamma + \sum_r f(\gamma _r)|\gamma_r \; d\rangle \qquad\qquad (2) f(ξ)P=f(γ)γcdγ+rf(γr)γrd(2)

由(1)左右求共轭,得到 f ( ξ ) f(\xi) f(ξ)的共轭 f ( ξ ) ‾ \overline{f(\xi)} f(ξ)

⟨ γ ∣ f ( ξ ) ‾ = f ‾ ( γ ) ⟨ γ ∣ ( 3 ) \langle \gamma | \overline{f(\xi)} = \overline{f}(\gamma)\langle \gamma | \qquad\qquad (3) γf(ξ)=f(γ)γ(3)

共 轭 关 系 ( 线 性 运 算 符 ) : f ( ξ ) ⇔ f ( ξ ) ‾ 共轭关系(线性运算符): f(\xi) \Leftrightarrow \overline{f(\xi)} (线)f(ξ)f(ξ)
共 轭 关 系 ( 数 ) : f ( γ ) ⇔ f ‾ ( γ ) 共轭关系(数): f(\gamma) \Leftrightarrow \overline{f} (\gamma) ()f(γ)f(γ)

经过一通推导——把(3)中的 γ \gamma γ缓成 γ 2 \gamma_2 γ2,再在(3)左右右乘 ∣ P ⟩ |P\rangle P,结合(2)可推导出

f ( ξ ) ‾ = f ‾ ( ξ ) \overline{f(\xi)} = \overline{f}(\xi) f(ξ)=f(ξ)

f ( ξ ) 的 共 轭 是 ξ 的 共 轭 复 函 数 f ‾ f(\xi)的共轭是\xi的共轭复函数\overline{f} f(ξ)ξf

   \;
   \;
   \;

可观测量的倒数

α \alpha α如果没有为0的本征值,那么其倒数可以表示为 α − 1 或 1 / α \alpha ^ {-1}或 1/\alpha α11/α

α − 1 ∣ β ⟩ = β − 1 ∣ β ⟩ \alpha ^ {-1}| \beta \rangle = \beta ^{-1} |\beta \rangle α1β=β1β

其中 ∣ β ⟩ |\beta\rangle β α \alpha α的本征态

式子两边乘以 α \alpha α

α α − 1 ∣ β ⟩ = α β − 1 ∣ β ⟩ \alpha\alpha ^ {-1}| \beta \rangle =\alpha \beta ^{-1} |\beta \rangle αα1β=αβ1β

右边 α β − 1 = 1 \alpha \beta ^{-1}=1 αβ1=1,因为 α \alpha α是线性运算符,而 β \beta β是其对应的本征值,所以 α β − 1 = 1 \alpha \beta ^{-1}=1 αβ1=1

比如 A α = λ α A\alpha = \lambda \alpha Aα=λα,两边都成上 λ − 1 \lambda ^{-1} λ1后,得到 A λ − 1 = 1 A\lambda^{-1}=1 Aλ1=1

α α − 1 = 1 = α − 1 α \alpha \alpha ^{-1} = 1 = \alpha ^{-1} \alpha αα1=1=α1α

综上,有乘法法则如下

( α β γ . . . ) − 1 = . . . γ − 1 β − 1 α − 1 (\alpha \beta \gamma ...)^{-1} = ... \gamma^{-1} \beta^{-1} \alpha^{-1} (αβγ...)1=...γ1β1α1

   \;
   \;
   \;

可观测量的平方根

可观测量的平方根始终存在,当她没有负的本征值的时候,她的平方根就是实数的。

α ∣ β ⟩ = ± β ∣ β ⟩ \sqrt{ \alpha }| \beta \rangle = \pm \sqrt{ \beta } |\beta \rangle α β=±β β

可推导出
α α = 1 \sqrt{\alpha}\sqrt{\alpha}=1 α α =1

由于第一个方程的正负性,会有很大平方根。为了固定其中某个,必须为方程的每个本征值确定一个具体的符号

这个符号可能从一个本征值到另一个本征值,不规则地变化。

   \;
   \;

一个可观测量的不同的平方根有 2 n 2^n 2n个,非零的本征值有 n n n个。

平方根函数仅仅用于那些没用负本征值的可观测量,所以平方根总是取正的。

   \;
   \;
   \;

物理解释

有这样一个可观测量 ξ \xi ξ,她有任意两个状态 x , y x,y x,y,她们分别对应矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x|和|y\rangle xy,组合成一个

⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle xξy

这个数与经典理论中的数不同,因为

  1. 通常这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle xξy不是实数,而经典理论中测量的数都是实数
  2. 这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle xξy与系统两个态有关,而经典理论只与一个数有关
  3. 这个数 ⟨ x ∣ ξ ∣ y ⟩ \langle x| \xi |y \rangle xξy不能由可观测量 ξ \xi ξ与态唯一确定,因为两个矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x |和 | y \rangle xy包含任意的数值因子,就算归一化了,还是有一个模为1的时间因子 e − i E n t / ℏ e^{-iE_nt / \hbar} eiEnt/

当两个矢量 ⟨ x ∣ 和 ∣ y ⟩ \langle x|和|y\rangle xy互为共轭的时候,数为 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi|x \rangle xξx必定是实数!能够当 ⟨ x ∣ \langle x | x归一化后,被唯一确定!!!

因为当用因子 e i c e^{ic} eic乘上 ⟨ x ∣ \langle x | x,就必须用因子 e − i c e^{-ic} eic乘上 ∣ x ⟩ | x \rangle x,这样数还是不变!!!(其中c是实数, c = E n t ℏ c = \frac{E_nt }{\hbar} c=Ent

   \;
   \;
   \;
   \;
⟨ x ∣ ξ ∣ x ⟩ + ⟨ x ∣ η ∣ x ⟩ = ⟨ x ∣ ξ + η ∣ x ⟩ \langle x|\xi | x\rangle + \langle x|\eta | x\rangle = \langle x|\xi + \eta| x\rangle xξx+xηx=xξ+ηx
⟨ x ∣ ξ ∣ x ⟩ ∗ ⟨ x ∣ η ∣ x ⟩ ≠ ⟨ x ∣ ξ ∗ η ∣ x ⟩ \langle x|\xi | x\rangle * \langle x|\eta | x\rangle \ne \langle x|\xi * \eta| x\rangle xξxxηx=xξηx
   \;
   \;
对于 ∣ x ⟩ |x\rangle x的态的系统,测量许多次 ξ \xi ξ ——

  • ∣ x ⟩ |x\rangle x没有归一化时,测量 ξ \xi ξ的结果 γ \gamma γ正比于 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi|x \rangle xξx

  • ∣ x ⟩ |x\rangle x有归一化时,多次测量 ξ \xi ξ的结果 γ \gamma γ的平均值为 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi | x\rangle xξx

一般,我们不能说可观测量对某一个定态有一个值,但可以说可观测量对这个态有一个平均值!

可观测量对这个态有一个确定的概率
   \;
   \;
   \;

概率

一个可观测量 ξ \xi ξ对应一个归一化了的右矢量 ∣ x ⟩ |x\rangle x,那么

ξ \xi ξ的平均值为 ⟨ x ∣ ξ ∣ x ⟩ \langle x|\xi|x \rangle xξx f ( ξ ) f(\xi) f(ξ)的平均值为 ⟨ x ∣ f ( ξ ) ∣ x ⟩ \langle x| f(\xi) |x \rangle xf(ξ)x
令函数 f ( ξ ) f(\xi) f(ξ)是这样的函数,即在 ξ = a \xi = a ξ=a时, f ( ξ ) = 1 f(\xi)=1 f(ξ)=1,其他情况为零

——竟然是个冲激函数!!!

记做        δ ξ a \;\;\;\delta_{\xi a}\quad δξa 这个 ξ \xi ξ的函数的平均值恰好是 ξ \xi ξ取a的概率,为

P a = ⟨ x ∣ δ ξ a ∣ x ⟩          ( 1 ) P_a = \langle x | \delta _{\xi a} | x \rangle \qquad \qquad \qquad \qquad \;\;\;\; (1) Pa=xδξax(1)

ξ \xi ξ在很小的范围内 a → a + d a a \rightarrow a+da aa+da的概率为

P ( a ) d a = ⟨ x ∣ X ( ξ ) ∣ x ⟩ ⟩ ( 2 ) P(a)da = \langle x|X(\xi)|x \rangle \rangle \qquad \qquad \qquad (2) P(a)da=xX(ξ)x(2)

如果这个范围内没有 ξ \xi ξ的任何本征值,那么有 X ( ξ ) = 0 , P ( a ) = 0 X(\xi)=0,P(a)=0 X(ξ)=0P(a)=0

如果 ∣ x ⟩ |x\rangle x没有归一化,那么(1)右边还是正比于 x i xi xi取a的概率,(2)右边还是正比于 x i xi xi a → a + d a a\rightarrow a+da aa+da之间的概率。
   \;

本征态

(1)如果系统处于 ξ \xi ξ的本征态,属于本征值 γ \gamma γ,则测量 ξ \xi ξ必定得到结果为 γ \gamma γ

(2)如果 ∣ γ ⟩ | \gamma \rangle γ ξ \xi ξ的本征右矢量,属于本征值 γ \gamma γ。那么

                 \;\;\;\;\;\;\;\; ①当 ξ \xi ξ有离散本征值的情况下, δ ξ a ∣ γ ⟩ = 0 , ( γ ≠ a ) \delta_{\xi a} |\gamma \rangle = 0,(\gamma \ne a) δξaγ=0,(γ=a)

                 \;\;\;\;\;\;\;\; ②当 ξ \xi ξ有连续本征值的情况下, X ( ξ ) ∣ γ ⟩ = 0 , ( γ ∉ [ a , a + d a ] ) X(\xi) |\gamma \rangle = 0,(\gamma \notin [ a, a+da]) X(ξ)γ=0,(γ/[a,a+da])

                 \;\;\;\;\;\;\;\; 无论是①还是②,对于 ∣ γ ⟩ |\gamma\rangle γ的态, γ \gamma γ肯定是 ξ \xi ξ的结果, ξ \xi ξ肯定是 γ \gamma γ的值

   \;
   \;

现实世界, ξ \xi ξ只能处于 γ \gamma γ附近的一个很窄的区域, ξ \xi ξ不能精确等于 γ \gamma γ,此时系统处于接近与 ξ \xi ξ本征态的态!!!

一个本征态 ∣ γ ⟩ |\gamma\rangle γ属于连续区域内的某一个本征值 γ \gamma γ,这只是数学的理想化

那些无法实现的态对应的右矢量,长度无穷大。
所有能实现的态,都对应于那些可以归一化的右矢量,这些右矢量构成一个Hilbert空间

   \;
   \;
   \;

   \;
   \;
   \;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

念心科道尊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值