一张图看懂训练模型

在这里插入图片描述
传送门

一些问题

如果你让他们运行足够长的时间,是否所有的梯度下降算法都能得出相同的模型?

  • 如果优化问题是凸的,并且假设学习率不是太高,那么所有梯度下降算法都将接近全局最优,并最终产生很相似的模型。除非逐步降低学习率,否则随机梯度下降和小批量梯度下降将永远不会真正收敛。相反,他们会一直围绕全局最优值来回跳跃。这意味着,即使你让他们运行很长的时间,这些梯度下降算法也会产生略微不同的模型。

假设您使用批量梯度下降,并在每个轮次绘制验证误差。如果你发现验证错误,持续上升,可能是什么情况,你该如何解决?

  • 如果验证错误,在每个轮次后持续上升,只有一个可能性是学习率过高,并且算法再发散。如果训练错误也增加了,那么这显然是问题所在,你应该降低学习率。但是如果训练错误没有增加,则你的模型已经过拟合训练集。应该停止训练。

使用多项式回归时过拟合怎么办?

  • 降低多项式阶数
  • 对模型进行正则化
  • 尝试增加训练集的大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值