Evoformer模块

DS4Sci_EvoformerAttention 是一个由 DeepMind 和 NVIDIA 等机构开发的内核集合,旨在优化以 Evoformer 为中心的结构生物学模型,特别是在处理大量序列和残基时。该内核通过减少内存占用和加速计算,显著提高了模型的扩展性和训练效率。

DS4Sci_EvoformerAttention 支持四种主要的注意力机制:MSA 行、MSA 列以及两种三角形注意力机制。这些机制通过不同的输入参数构建注意力权重,从而促进信息交换和更新对偶表示。此外,该内核基于 CUDA 实现,需要特定版本的 GPU 和 CUDA 版本(如 NVIDIA V100 或更高版本,CUDA 11.3 或更高版本),并要求输入张量的数据类型为 torch.float16 或 torch.bfloat16。

在实际应用中,DS4Sci_EvoformerAttention 已被成功应用于 OpenFold 项目,该项目是 AlphaFold2 的社区版本。通过使用该内核,OpenFold 团队成功将 AlphaFold2 的峰值内存需求降低了 13 倍,同时保持了模型的准确性。这一优化不仅解决了内存爆炸问题,还显著提升了训练速度和模型的可扩展性。

DS4Sci_EvoformerAttention 是一个高效的工具,能够显著优化基于 Evoformer 的结构生物学模型的内存使用和计算性能,使其更适合大规模数据处理和复杂模型训练。

DS4Sci_EvoformerAttention 内核的具体实现细节并未在我搜索到的资料中详细描述。然而,我们可以从相关的信息中推测一些可能的实现细节。

根据,Evoformer模型中的Attention类的实现如下:

class Attention(nn.Module):
    def __init__(
        self,
        dim,
        seq_len = None,
        heads = 8,
        dim_head = 64,
        dropout = 0.,
        gating = True
    ):
        super().__init__()
        inner_dim = dim_head * heads
        self.heads  = heads
        self.gating  = gating

        self.to _qkv = nn.Linear(dim, inner_dim * 3, bias=False)
        self.to _out = nn.Linear(inner_dim, dim)

        if seq_len is not None:
            self.register _buffer('bias', torch.tril (torch.o
### Alphafold3 使用指南 #### 最新版本特性介绍 Alphafold 3 因其彻底改变生物技术的潜力而受到广泛关注。这一版本引入了多项关键创新,使其性能显著优于前代产品[^1]。 #### 架构升级 核心架构基于改进版的Evoformer模块,这是一种深度学习框架,支撑了AlphaFold 2 的卓越表现。通过优化此模块,AlphaFold 3 实现了更高效的蛋白质结构预测能力。 #### 扩展的应用范围 新一代模型不仅限于特定类型的分子,而是覆盖了所有生命体内的基本组成单元。这意味着研究人员能够探索更加广泛的生命科学领域,从基础研究到临床应用均能受益于此工具带来的突破性进展。 #### 创新的建模方式 不同于传统方法,AlphaFold 3 运用了先进的扩散模型来进行预测。具体来说,该算法会先初始化一组随机分布的原子集合,随后逐步调整它们的位置直至形成稳定且精确的目标蛋白三维结构。这种渐进式的构建策略有效提高了最终结果的质量与可靠性。 ```python def predict_structure(input_sequence): # 初始化一团随机分布的原子作为起点 atoms = initialize_random_atoms() # 应用多轮迭代更新操作以逼近真实结构 for _ in range(num_iterations): update_positions(atoms, input_sequence) return finalize_structure(atoms) ``` #### 数据处理流程 当接收到待分析序列时,程序首先将其转换成适合内部运算的形式,接着调用上述提到的扩散网络完成主要工作。值得注意的是,在某些情况下可能会涉及到手性的特殊考虑,比如侧链部分可能无法完美重现自然状态下的特征[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值