英特尔宣布针对对Llama 3.1进行优化 以提升所有产品的性能

日前Meta正式发布了Llama 3.1开源大模型,以其庞大的参数量和卓越性能,首次在多项基准测试中击败了GPT-4o等业界领先的闭源模型。允许开发者自由地进行微调、蒸馏,甚至在任何地方部署,这种开放性为AI技术的普及和创新提供了无限可能。

在这里插入图片描述
Llama 3.1支持128k的上下文长度和多语言能力,无论是在基本常识、可操作性还是数学、工具使用和多语言翻译方面,都展现出了行业领先的能力。

紧随其后,芯片巨头Intel迅速响应,宣布其AI产品组合已全面适配Llama 3.1,并针对Intel AI硬件进行了软件优化。

在这里插入图片描述
在这里插入图片描述
包括了数据中心、边缘计算以及客户端AI产品,确保用户能够在Intel平台上获得最佳的性能体验。

Intel的适配工作涵盖了PyTorch及Intel PyTorch扩展包、DeepSpeed、Hugging Face Optimum库和vLLM等,确保了从研发到部署的全流程支持。

目前,Intel AI PC及数据中心AI产品组合和解决方案已面向全新Llama 3.1模型实现优化,OPEA(企业AI开放平台)亦在基于Intel至强等产品上全面启用。

根据基准测试,在第五代Intel至强平台上以1K token输入和128 token输出运行80亿参数的Llama 3.1模型,可以达到每秒176 token的吞吐量,同时保持下一个token延迟小于50毫秒。

在配备了酷睿Ultra处理器和锐炫显卡的AI PC上,进行轻量级微调和应用定制比以往更加容易,并且AI工作负载可无缝部署于CPU、GPU以及NPU上,同时实现性能优化。

在这里插入图片描述
基于第五代Intel至强可扩展处理器的Llama 3.1推理延迟

在这里插入图片描述

在配备内置Intel锐炫显卡的Intel酷睿Ultra 7 165H AI PC上,Llama 3.1推理的下一个token延迟

在这里插入图片描述
在使用Intel锐炫A770 16GB限量版显卡的AI PC上,Llama 3.1推理的下一个token延迟

在这里插入图片描述
基于Llama 3.1的端到端RAG流水线,由Intel Gaudi 2加速器和至强处理器提供支持

### 如何在 ULTRA5 处理器上部署和运行大模型 #### 准备工作环境 为了成功地在英特尔® 酷睿™ Ultra5处理器上部署大型模型,首先需要设置适当的工作环境。确保操作系统已更新至最新本,并安装必要的依赖库和支持软件包。 对于特定的大规模预训练模型如Llama 3.1 405B,在部署前需确认硬件配置满足最低要求,尤其是显存容量方面的要求[^2]。由于该模型体积庞大且计密集型高,建议采用具备充足VRAM资源的GPU加速卡来辅助处理任务;如果仅依靠CPU,则可能面临较长的推理时间甚至无法完成加载的情况。 #### 安装 TensorFlow Lite Runtime 或其他框架支持 针对不同类型的神经网络架构可以选择合适的执行引擎。例如,当目标是在边缘设备或低功耗平台上高效运行轻量级AI应用时,可以考虑使用`TFLite Interpreter API`来进行TensorFlow Lite模型的解析与预测操作[^1]: ```python import tflite_runtime.interpreter as tflite interpreter = tflite.Interpreter(model_path="model.tflite") interpreter.allocate_tensors() ``` 而对于更复杂、参数更多的深度学习项目来说,《部署 Llama 3.1 405B:分步指南》提到可以通过CUDA工具链充分利用NVIDIA GPU的强大加快运速度。 #### 模型转换与优化 考虑到实际应用场景中的性能需求以及能耗限制等因素,通常还需要对原始模型文件进行一系列针对性调整——比如裁剪冗余层结构、降低精度表示(FP32->INT8)、融合相邻节点等措施以达到更好的平衡状态。OpenVINO™ 工具套件提供了便捷易用的功能模块帮助开发者轻松实现上述目的,特别是在基于Intel CPU/GPU异构平台上的适配性尤为突出[^3]。 #### 测试验证阶段 最后一步就是通过编写简单的测试脚本来检验整个流程是否顺畅无误。这里给出一段Python代码片段用于调用已经准备好的YOLOv8检测法实例化对象并传入待识别图像路径作为输入参数之一: ```python from ultralytics import YOLO # 加载本地保存下来的最优权重文件 model = YOLO('yolov8n_best.pt') results = model.predict(source='bus.jpg', show=True, save_txt=False) print(results) ``` 此过程同样适用于 Phi-3-min 等其他经过适当修改后的定制模型[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值