详解各种LLM系列|(5)LLaMA 3模型解析(Meta重磅发布!)

一、引言

Blog链接:https://ai.meta.com/blog/meta-llama-3/

MODEL CARD: https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

体验链接:https://meta.ai/  or  https://huggingface.co/chat/

4月18日,Meta突然发布Llama 3, 在Llama 2的基础上进行了进一步的升级,包括使用更高质量的数据集、模型架构的改进、引入新的信任和安全工具(如Llama Guard 2、Code Shield和CyberSec Eval 2)等;

这次Llama 3 的发布包括了8B 和 70B 两种规模的预训练和指令微调生成文本模型。

Llama 3型号将很快在AWS、Databricks、Google Cloud、huggingFace、Kaggle、IBM WatsonX、微软Azure、NVIDIA NIM和Snowflake上推出,并得到AMD、AWS、戴尔、英特尔、NVIDIA和高通提供的硬件平台的支持


二、卓越的性能

2.1 标准测试

这次的 Llama 在性能上展现了大幅度提升,包括最直接的 8k 上下文(之前是4k),以及可以更好地完成输出任务。

通过pre-training和post-training的改进,Llama 3的预训练和指令微调模型是目前在8B和70B参数尺度上存在的最好的模型(截止至发布日期)。

Post-training的改进大大降低了错误拒绝率,改善了一致性,增加了模型响应的多样性;Llama 3在推理、代码生成和指令跟踪等功能上有极大的提升,具体看一下对比数据:

(Llama 3 Pretrained模型)

 

(Llama 3 Instruct模型) 

(这里再附一张 Llama 2 和 3 的对比)

2.2 人类偏好测试

在Llama 3的开发过程中,为了优化实际场景的性能,Meta开发了一个新的高质量的人类评价集。这个评估集包含1800个提示,涵盖了12个关键用例:征求建议、头脑风暴、分类、封闭式问题回答、编码、创造性写作、提取、作为一个角色/角色中、开放式问题回答、推理、重写和总结。

下面的图表显示了模型对这些类别的人类评估的汇总结果:

根据人类评估者的偏好排名,Llama 的 70B 参数模型在实际应用场景中的表现,尤其是在指令跟随方面,相较于其他相当规模的模型表现出了显著的优势。

三、优化之处

3.1 模型架构

3.1.1 Tokenzier

分词器:与Llama 2不同的是,Llama 3将tokenizer由sentencepiece换成tiktoken,词汇量从 的32K增加到 128K,增加了 4 倍 (更大的词汇库能够更高效地编码文本,增加编码效率,可以实现更好的下游性能。不过这也会导致嵌入层的输入和输出矩阵尺寸增大,模型参数量也会增大)。


序列长度:输入上下文长度从 4096(Llama 2)增加到 8192。但相对于GPT-4 的 128K来说还是相当

<think>嗯,用户之前问了关于在本地使用DeepSeek模型的方案,现在又问Llama2+本地RAG构建。我需要先理解这两个概念的关系。用户可能是想了解如何结合Llama2和RAG来搭建本地问答系统,作为开源替代方案。 首先,得确认用户对RAG的理解程度。RAG是检索增强生成,结合了检索和生成模型Llama2Meta的开源大模型,适合本地部署。用户可能想知道具体的步骤,比如如何准备数据、选择模型、搭建系统。 用户之前得到过关于DeepSeek官方和开源方案的对比,现在转向具体实现的开源方案。需要详细说明Llama2和RAG的结合方法,可能包括技术选型、步骤、代码示例,以及优缺点。 要注意用户可能的技术背景,可能是开发者或研究人员,需要实用指导。需要分步骤讲解,从数据准备到部署,给出代码示例,比如使用Hugging Face的模型和ChromaDB。 还要考虑用户可能遇到的挑战,比如显存不足、检索效果优化、模型微调等,给出注意事项和建议。对比之前的回答,保持结构一致,但更聚焦在Llama2和RAG的结合上。 最后,总结适用场景,帮助用户决定是否选择这个方案。确保语言通俗,避免过多术语,但作为技术方案,适当的技术细节是必要的。可能需要检查是否有遗漏的步骤或潜在问题,比如数据预处理的重要性,或者模型选择的替代方案。</think>以下是关于使用 **Llama2 + 本地RAG** 构建本地问答系统的技术方案详解: --- ### **核心架构原理** ```mermaid graph LR A[用户提问] --> B(文本向量化) B --> C[向量数据库检索] C --> D[构建Prompt] D --> E[Llama2生成回答] E --> F[最终答案] ``` 通过 **检索增强生成(RAG)** 将外部知识库与Llama2结合,突破大模型固有知识限制,实现精准的领域知识问答。 --- ### **技术实现六步曲** #### **1. 知识库准备** - 支持格式:PDF/TXT/Markdown/数据库 - 预处理代码示例: ```python from langchain.document_loaders import DirectoryLoader # 加载本地文档 loader = DirectoryLoader(&#39;./docs&#39;, glob=&#39;**/*.txt&#39;) documents = loader.load() # 文本分割 from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) chunks = text_splitter.split_documents(documents) ``` #### **2. 向量化引擎选择** - 推荐方案: ```python # 中文Embedding模型 from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-zh-v1.5") # 英文场景可替换为: # embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") ``` #### **3. 向量数据库搭建** - ChromaDB本地部署方案: ```python from langchain.vectorstores import Chroma # 持久化存储向量库 vectordb = Chroma.from_documents( documents=chunks, embedding=embeddings, persist_directory="./chroma_db" ) ``` #### **4. Llama2本地部署** - 最低硬件要求: ```markdown - 7B版本:RTX 3090(24GB) *1 - 13B版本:RTX 3090 *2 - 70B版本:需要A100(80GB) *4 ``` - 使用vLLM加速推理: ```python from vllm import LLM, SamplingParams llm = LLM(model="meta-llama/Llama-2-7b-chat-hf") sampling_params = SamplingParams(temperature=0.5, max_tokens=500) ``` #### **5. RAG流程整合** - 核心处理逻辑: ```python def rag_pipeline(query): # 向量检索 retriever = vectordb.as_retriever(search_kwargs={"k": 3}) docs = retriever.get_relevant_documents(query) # 构建Prompt context = "\n".join([doc.page_content for doc in docs]) prompt = f"""基于以下信息用中文回答: {context} 问题:{query} 答案:""" # 生成回答 outputs = llm.generate(prompt, sampling_params) return outputs[0].text ``` #### **6. 交互接口开发** - 快速构建Web API: ```python from flask import Flask, request app = Flask(__name__) @app.route(&#39;/ask&#39;, methods=[&#39;POST&#39;]) def ask(): question = request.json[&#39;question&#39;] return {&#39;answer&#39;: rag_pipeline(question)} if __name__ == &#39;__main__&#39;: app.run(host=&#39;0.0.0.0&#39;, port=8000) ``` --- ### **性能优化技巧** 1. **混合检索策略** ```python # 结合关键词+向量混合检索 from langchain.retrievers import BM25Retriever, EnsembleRetriever bm25_retriever = BM25Retriever.from_documents(chunks) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vectordb.as_retriever()], weights=[0.3, 0.7] ) ``` 2. **缓存加速** ```python # 使用磁盘缓存 from langchain.cache import SQLiteCache import langchain langchain.llm_cache = SQLiteCache(database_path=".langchain.db") ``` 3. **量化压缩** ```bash # 使用GGUF量化格式 ./llama.cpp/quantize llama-2-7b.Q4_0.gguf ``` --- ### **方案优势与局限** | 维度 | 优势 | 局限 | |-------------|-------------------------------|-------------------------------| | 知识更新 | 🟢 支持实时更新知识库 | 🔴 需要定期维护向量库 | | 硬件成本 | 🟢 单卡GPU可运行 | 🔴 70B模型需要高端显卡 | | 响应速度 | 🟡 3-5秒级响应 | 🔴 比API方案慢 | | 准确率 | 🟡 依赖检索质量 | 🔴 存在幻觉风险 | -- ### **典型应用场景** 1. 企业知识库问答系统 2. 个人数字文档助手 3. 行业法规智能查询 4. 学术论文研究助手 --- **部署建议**: - 从7B版本开始验证原型,逐步升级模型规模 - 使用LangChain框架可快速集成更多功能模块(如联网搜索、代码解释器等) - 对关键领域知识建议进行Llama2的LoRA微调(需准备标注数据)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值