【黑森林官方墙裂推荐】FLUX.1-Canny-dev 和 FLUX.1-Depth-dev:释放创造的可能性

black-forest-labs/FLUX.1-Canny-dev

在这里插入图片描述

FLUX.1 Canny [dev] 是一个 120 亿参数的整流变换器,能够根据文本描述生成图像,同时遵循给定输入图像的结构。

主要功能

  1. 尖端的输出质量。
  2. 它将令人印象深刻的及时性与基于 Canny 边缘的源图像结构保持相结合。
  3. 使用引导蒸馏法进行训练,使 FLUX.1 Canny [dev] 更为高效。
  4. 开放权重可推动新的科学研究,并增强艺术家开发创新工作流程的能力。
  5. 生成的输出可用于 FLUX.1 [dev] 非商业许可中所述的个人、科学和商业目的。

在这里插入图片描述

使用

要将 FLUX.1-Canny-dev 与 🧨 diffusers python 库一起使用,首先要安装或升级 diffusers 和 controlnet_aux。

pip install -U diffusers controlnet_aux

然后可以使用 FluxControlPipeline 运行模型

import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=50,
    guidance_scale=30.0,
).images[0]
image.save("output.png")

使用 cpu offload 可以让模型运行在消费级显卡中。

black-forest-labs/FLUX.1-Depth-dev

在这里插入图片描述
FLUX.1 深度[dev]是一个 120 亿参数的整流变换器,能够根据文本描述生成图像,同时遵循给定输入图像的结构。

主要功能

  1. 尖端的输出质量。
  2. 它将令人印象深刻的及时性与保持基于深度图的源图像结构相结合。
  3. 使用引导蒸馏法进行训练,使 FLUX.1 深度[开发]更加高效。
  4. 开放权重以推动新的科学研究,并授权艺术家开发创新的工作流程。
  5. 根据 FLUX.1 深度[开发]非商业许可证的规定,生成的输出可用于个人、科学和商业目的。
    在这里插入图片描述

使用

要使用 FLUX.1-Depth-dev 和 🧨 diffusers python 库,首先要安装或升级 diffusers 和 image_gen_aux。

pip install -U diffusers
pip install git+https://github.com/asomoza/image_gen_aux.git

然后可以使用 FluxControlPipeline 运行模型

import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=30,
    guidance_scale=10.0,
    generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")

使用 cpu offload 可以让模型运行在消费级显卡中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值