【花雕学编程】ESP32 ChatGPT之智能语音助手

在这里插入图片描述

Arduino是一个开放源码的电子原型平台,它可以让你用简单的硬件和软件来创建各种互动的项目。Arduino的核心是一个微控制器板,它可以通过一系列的引脚来连接各种传感器、执行器、显示器等外部设备。Arduino的编程是基于C/C++语言的,你可以使用Arduino IDE(集成开发环境)来编写、编译和上传代码到Arduino板上。Arduino还有一个丰富的库和社区,你可以利用它们来扩展Arduino的功能和学习Arduino的知识。

Arduino的特点是:
1、开放源码:Arduino的硬件和软件都是开放源码的,你可以自由地修改、复制和分享它们。
2、易用:Arduino的硬件和软件都是为初学者和非专业人士设计的,你可以轻松地上手和使用它们。
3、便宜:Arduino的硬件和软件都是非常经济的,你可以用很低的成本来实现你的想法。
4、多样:Arduino有多种型号和版本,你可以根据你的需要和喜好来选择合适的Arduino板。
5、创新:Arduino可以让你用电子的方式来表达你的创意和想象,你可以用Arduino来制作各种有趣和有用的项目,如机器人、智能家居、艺术装置等。

在这里插入图片描述
ESP32
ESP32 是由 Espressif Systems 推出的一款高性能、低功耗的 Wi-Fi 和 Bluetooth 芯片组。它广泛应用于物联网(IoT)设备和智能家居产品,拥有丰富的外设接口,支持 GPIO、ADC、DAC、PWM 等功能,适合各种嵌入式系统开发。以下是 ESP32 的一些关键特点:
1、双核处理器:内置两个 Xtensa LX6 处理器,运行速度高达 240 MHz。
2、无线通信:支持 2.4 GHz Wi-Fi 和 Bluetooth 4.2 / BLE 双模。
3、低功耗模式:支持多种省电模式,非常适合电池供电的设备。
4、丰富的外设接口:包括多个 GPIO、I2C、SPI、UART、ADC、DAC、PWM 等。

ChatGPT
ChatGPT 是一个基于 GPT-3.5 架构的语言模型,由 OpenAI 开发。它可以生成类人文本,并在对话中理解和生成自然语言。以下是 ChatGPT 的一些关键特点:
1、自然语言理解和生成:能够理解并生成流畅且上下文相关的文本。
2、多任务处理:可以回答问题、生成内容、进行对话、提供建议等。
3、上下文感知:能够在对话中保持上下文一致性和连贯性。
4、强大的知识库:拥有大量的训练数据,涵盖广泛的知识领域。

ESP32 与 ChatGPT 的结合
将 ESP32 与 ChatGPT 结合是一种将物联网(IoT)设备与人工智能(AI)深度融合的创新方式,可以实现更智能的设备和系统。以下是这种结合的几种应用场景和技术实现方法:
1、应用场景
智能家居助手:ESP32 可作为智能家居系统中的语音助手硬件,通过 Wi-Fi 连接到 ChatGPT 实现自然语言对话。例如,通过语音命令控制灯光、温度、安防系统等。
健康监测与建议:ESP32 采集用户的健康数据,如心率、血压等,通过 Wi-Fi 发送到 ChatGPT 进行分析,并提供个性化的健康建议。
智能客服机器人:在商店或展会等场所,ESP32 可以作为硬件基础,通过 ChatGPT 提供智能问答服务,解答客户问题和提供相关信息。
教育与学习助手:ESP32 结合 ChatGPT 可以用作教育机器人,提供交互式的学习体验,回答学生的问题,进行辅导和知识传授。
智能语音助手:结合语音识别模块,用户可以通过语音与ChatGPT进行交互,实现语音控制和智能问答。
物联网设备控制:利用ChatGPT的智能对话能力,用户可以通过自然语言指令控制连接到ESP32的物联网设备。
教育与娱乐:在教育领域,ChatGPT可以作为智能教育助手,帮助学生解答问题和提供学习资源;在娱乐领域,可以用于开发具有智能对话功能的游戏和互动体验。
2、技术实现
数据采集与传输:ESP32 通过传感器采集数据(如温度、湿度、用户输入的语音等),然后通过 Wi-Fi 将这些数据传输到服务器。
API 调用:服务器接收到数据后,通过调用 ChatGPT 的 API 进行自然语言处理和分析。
结果返回与执行:ChatGPT 生成的响应通过服务器返回给 ESP32,驱动相应的硬件执行特定操作,如播放音频响应、显示文字信息、控制设备等。
3、主要优势
智能化提升:通过结合 ChatGPT,ESP32 设备能够提供更智能、更人性化的交互体验。
多功能性:能够支持多种应用场景,从智能家居到健康监测,再到教育辅助。
实时性:能够实现数据的实时处理和反馈,提高用户体验。

在这里插入图片描述
1、主要特点
(1)语音交互便利性
语音唤醒与识别:ESP32 ChatGPT 智能语音助手通常具有语音唤醒功能,用户可以使用自定义的唤醒词(如 “小助手”“嗨,设备名” 等)来激活语音助手。一旦被唤醒,它能够快速、准确地识别用户语音指令。这种免手动操作的方式,极大地提高了用户与设备交互的便利性,使用户可以在双手忙碌的情况下(如烹饪、驾驶等)轻松获取信息或控制设备。
多语言支持:可以支持多种语言的语音识别和对话,满足不同用户群体的需求。无论是全球通用的语言如英语、汉语、西班牙语等,还是一些特定地区使用的小语种,都能让用户以自己熟悉的语言进行交流。这使得产品具有更广泛的适用性,能够跨越语言障碍,为世界各地的用户提供服务。
(2)功能集成性
智能家居控制中心:作为智能家居系统的核心控制部件,它可以与各种 ESP32 连接的智能设备进行通信。通过语音指令,用户能够轻松控制灯光的开关、亮度和颜色调节,电器的开启与关闭,窗帘的开合等操作。例如,用户可以说 “把卧室灯调暗一点” 或者 “打开客厅的空调”,语音助手会将这些指令传达给相应的设备并执行。
知识问答与信息查询:集成了强大的知识问答功能,能够回答各种类型的问题。无论是常识性问题(如 “地球的直径是多少”)、学术问题(如 “相对论的基本原理是什么”),还是实时信息查询(如 “今天的股票行情如何”),都可以通过与 ChatGPT 的交互获取答案。同时,还能提供新闻、天气、交通等生活信息服务,方便用户及时了解外部情况。
(3)个性化定制
用户偏好学习:智能语音助手可以通过分析用户的使用习惯、提问内容和指令偏好,逐渐学习用户的个性化需求。例如,如果用户经常询问科技类新闻,语音助手会在后续的信息推送中优先提供这方面的内容。它还可以根据用户对设备控制的习惯,自动调整一些默认设置,如灯光亮度、温度等,为用户提供更加贴心的服务。
语音音色和风格定制:允许用户根据自己的喜好定制语音助手的音色和说话风格。用户可以选择不同的语音音色,如男性、女性、儿童声音等,并且可以调整语音的语速、语调。在说话风格方面,也可以选择正式、亲切、幽默等风格,使语音助手更符合用户的个性和使用场景。
(4)对话连贯性与智能性
多轮对话支持:能够支持多轮连续对话,理解对话的上下文。例如,用户先问 “推荐一部科幻电影”,语音助手推荐了一部电影后,用户接着问 “这部电影的导演是谁”,语音助手可以根据前面的推荐内容准确回答。这种多轮对话能力使得交流更加自然流畅,就像和一个真正的助手在对话一样。
意图理解与模糊处理:具有较强的意图理解能力,即使用户的语音指令不太清晰或者存在模糊性,也能尝试理解用户的大致意图。例如,用户说 “我有点冷”,语音助手可以理解为需要调高室内温度,并相应地调整空调温度设置。它还可以通过追问等方式来进一步明确用户的意图,提高交互的准确性。

2、应用场景
(1)智能家居环境
家庭自动化控制:在家庭场景中,用户可以通过语音助手轻松控制各种智能设备,实现家庭自动化。比如,早上醒来时,用户可以说 “打开窗帘,播放音乐”,语音助手会同时控制窗帘拉开和音乐播放设备开启,为用户营造舒适的起床氛围。晚上睡觉前,用户说 “关闭所有电器,调暗灯光”,就能方便地准备入睡环境。
家庭信息中心:作为家庭的信息中心,它可以提供各种生活信息。例如,在厨房做饭时,用户可以询问 “告诉我一个新菜谱” 或者 “食材的保质期一般是多久”;在客厅休息时,用户可以查询 “明天的天气适合出门吗” 或者 “最新的体育赛事结果”,为家庭生活提供便利。
(2)车载系统
驾驶辅助与信息查询:在汽车驾驶过程中,语音助手可以帮助驾驶员进行一些操作,如控制车内的温度、导航系统、音乐播放等。同时,驾驶员可以询问交通路况、附近的加油站或餐厅位置等信息。例如,驾驶员可以说 “开启导航,带我去最近的加油站” 或者 “查询一下前方路段的拥堵情况”,提高驾驶的安全性和便利性。
车载娱乐互动:在长途驾驶时,语音助手可以提供娱乐服务,如讲笑话、讲故事、推荐有声读物等。例如,驾驶员说 “给我讲个笑话解解闷”,语音助手可以提供有趣的笑话,缓解驾驶疲劳。
(3)教育与学习
语言学习辅助:对于语言学习爱好者,语音助手可以提供语言学习服务。用户可以通过对话练习口语,让语音助手纠正发音、解释词汇和语法。例如,用户说 “请帮我纠正这句话的发音:I love reading books.”,语音助手可以提供发音指导。同时,用户也可以要求语音助手进行翻译、提供例句等操作。
知识问答与辅导:学生在学习过程中可以使用语音助手查询知识。比如,在做作业时,学生问 “数学中勾股定理的证明方法有哪些” 或者 “历史上工业革命的影响是什么”,语音助手可以提供相关知识讲解,辅助学生学习。
(4)商业与服务场所
智能客服与引导:在酒店、商场、餐厅等商业场所,语音助手可以作为智能客服提供服务。例如,在酒店前台,顾客可以问 “我的房间在几楼” 或者 “酒店的健身房开放时间是多久”;在商场里,顾客可以询问 “某品牌店铺在哪里” 或者 “商场的优惠活动有哪些”,语音助手可以提供相应的信息和引导。
服务控制与体验提升:在餐厅中,顾客可以通过语音助手点菜、查询菜品信息、要求调整座位等。例如,顾客说 “我想点一份宫保鸡丁,不要辣” 或者 “帮我换一个靠窗的座位”,提升顾客的服务体验。

3、需要注意的事项
(1)语音识别准确性
环境因素影响:语音识别的准确性可能会受到环境噪音、语音清晰度等因素的影响。在嘈杂的环境中(如车间、街道、餐厅等),语音助手可能会出现识别错误。因此,在使用语音助手时,尽量在相对安静的环境下进行,或者采用具有更好抗噪性能的麦克风等硬件设备来提高识别准确率。
语言和口音差异:对于带有浓厚地方口音、非标准语言表达或者生僻词汇的语音指令,可能会出现识别困难。语音助手的语言模型需要不断更新和优化,以适应各种语言变体和专业词汇。同时,在产品说明中可以告知用户尽量使用标准的语言表达,以提高识别成功率。
(2)数据隐私与安全
语音数据存储与使用:语音助手会收集用户的语音数据,这些数据包含用户的个人信息和隐私内容。必须确保语音数据在存储和使用过程中的安全性,遵守相关的隐私政策。数据应该进行加密存储,并且只有在用户明确同意的情况下才能用于其他目的,如改善语音识别算法等。
网络安全风险:由于语音助手通常需要通过网络与外部服务(如 ChatGPT)进行交互,存在网络安全风险,如数据泄露、黑客攻击等。要加强网络安全防护措施,如采用安全的网络协议、定期更新安全补丁等,防止非法访问和数据篡改。
(3)功能可靠性与适用性
服务中断风险:智能语音助手的功能依赖于多个服务组件,如语音识别服务、ChatGPT 服务、设备控制接口等。如果其中任何一个环节出现故障或服务中断,可能会导致语音助手无法正常工作。因此,需要建立备份机制和故障检测系统,及时发现并解决问题,以确保功能的可靠性。
功能局限性:尽管语音助手具有多种功能,但在某些复杂的场景或专业领域,其功能可能会受到限制。例如,在医疗诊断、法律咨询等高度专业的领域,语音助手提供的信息可能只是一般性的参考,不能替代专业的建议。在使用时,需要明确其功能的适用范围,避免过度依赖。

在这里插入图片描述
1、基础智能语音助手

#include <WiFi.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>
#include <SpeechRecognition.h>

const char* ssid = "your_SSID";       // WiFi SSID
const char* password = "your_PASSWORD"; // WiFi 密码
const char* apiUrl = "https://api.openai.com/v1/chat/completions"; // ChatGPT API URL
const char* apiKey = "your_API_KEY"; // 替换为你的 API 密钥

SpeechRecognition recognizer;

void setup() {
    Serial.begin(115200);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(1000);
        Serial.println("Connecting to WiFi...");
    }
    Serial.println("Connected to WiFi.");

    // 初始化语音识别
    recognizer.begin();
}

void loop() {
    String spokenText = recognizer.recognize();
    if (spokenText.length() > 0) {
        Serial.println("Recognized: " + spokenText);

        // 发送请求到 ChatGPT
        HTTPClient http;
        http.begin(apiUrl);
        http.addHeader("Content-Type", "application/json");
        http.addHeader("Authorization", String("Bearer ") + apiKey);

        String requestBody = "{\"model\":\"gpt-3.5-turbo\",\"messages\":[{\"role\":\"user\",\"content\":\"" + spokenText + "\"}]}";

        int httpResponseCode = http.POST(requestBody);

        if (httpResponseCode > 0) {
            String response = http.getString();
            Serial.println("Response: " + response);
        } else {
            Serial.println("Error on HTTP request: " + String(httpResponseCode));
        }

        http.end();
    }
}

2、智能语音助手回答问题并通过语音播放

#include <WiFi.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>
#include <SpeechRecognition.h>
#include <TTS.h> // 假设使用某个文本转语音库

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";
const char* apiUrl = "https://api.openai.com/v1/chat/completions";
const char* apiKey = "your_API_KEY";

SpeechRecognition recognizer;
TTS tts; // 初始化文本转语音对象

void setup() {
    Serial.begin(115200);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(1000);
        Serial.println("Connecting to WiFi...");
    }
    Serial.println("Connected to WiFi.");

    // 初始化语音识别和 TTS
    recognizer.begin();
    tts.begin(); // 初始化 TTS
}

void loop() {
    String spokenText = recognizer.recognize();
    if (spokenText.length() > 0) {
        Serial.println("Recognized: " + spokenText);

        // 发送请求到 ChatGPT
        HTTPClient http;
        http.begin(apiUrl);
        http.addHeader("Content-Type", "application/json");
        http.addHeader("Authorization", String("Bearer ") + apiKey);

        String requestBody = "{\"model\":\"gpt-3.5-turbo\",\"messages\":[{\"role\":\"user\",\"content\":\"" + spokenText + "\"}]}";

        int httpResponseCode = http.POST(requestBody);

        if (httpResponseCode > 0) {
            String response = http.getString();
            Serial.println("Response: " + response);

            // 解析 JSON 响应并通过 TTS 播放
            StaticJsonDocument<512> doc;
            DeserializationError error = deserializeJson(doc, response);

            if (!error) {
                const char* reply = doc["choices"][0]["message"]["content"];
                Serial.println("ChatGPT Reply: " + String(reply));
                tts.speak(reply); // 播放回复
            } else {
                Serial.println("Failed to parse JSON: " + String(error.f_str()));
            }
        } else {
            Serial.println("Error on HTTP request: " + String(httpResponseCode));
        }

        http.end();
    }
}

3、智能语音助手控制设备

#include <WiFi.h>
#include <HTTPClient.h>
#include <ArduinoJson.h>
#include <SpeechRecognition.h>

const char* ssid = "your_SSID";
const char* password = "your_PASSWORD";
const char* apiUrl = "https://api.openai.com/v1/chat/completions";
const char* apiKey = "your_API_KEY";

SpeechRecognition recognizer;
const int relayPin = 2; // 控制设备的引脚

void setup() {
    Serial.begin(115200);
    pinMode(relayPin, OUTPUT);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(1000);
        Serial.println("Connecting to WiFi...");
    }
    Serial.println("Connected to WiFi.");

    // 初始化语音识别
    recognizer.begin();
}

void loop() {
    String spokenText = recognizer.recognize();
    if (spokenText.length() > 0) {
        Serial.println("Recognized: " + spokenText);

        // 发送请求到 ChatGPT
        HTTPClient http;
        http.begin(apiUrl);
        http.addHeader("Content-Type", "application/json");
        http.addHeader("Authorization", String("Bearer ") + apiKey);

        String requestBody = "{\"model\":\"gpt-3.5-turbo\",\"messages\":[{\"role\":\"user\",\"content\":\"" + spokenText + "\"}]}";

        int httpResponseCode = http.POST(requestBody);

        if (httpResponseCode > 0) {
            String response = http.getString();
            Serial.println("Response: " + response);

            // 解析 JSON 响应
            StaticJsonDocument<512> doc;
            DeserializationError error = deserializeJson(doc, response);

            if (!error) {
                const char* reply = doc["choices"][0]["message"]["content"];
                Serial.println("ChatGPT Reply: " + String(reply));

                // 控制设备
                if (String(reply).indexOf("开灯") >= 0) {
                    digitalWrite(relayPin, HIGH); // 开灯
                    Serial.println("灯已打开");
                } else if (String(reply).indexOf("关灯") >= 0) {
                    digitalWrite(relayPin, LOW); // 关灯
                    Serial.println("灯已关闭");
                }
            } else {
                Serial.println("Failed to parse JSON: " + String(error.f_str()));
            }
        } else {
            Serial.println("Error on HTTP request: " + String(httpResponseCode));
        }

        http.end();
    }
}

要点解读
WiFi 连接:
所有示例中,ESP32 首先连接到 WiFi 网络。确保正确配置 SSID 和密码,以便可以访问互联网并与 ChatGPT API 通信。
语音识别功能:
使用 SpeechRecognition 库实现语音识别。用户的语音输入将被转换为文本,方便发送到 ChatGPT 进行处理。确保选择适合的语音识别硬件和库,并进行初始化。
HTTP 请求与 JSON 解析:
在所有示例中,ESP32 发送 HTTP POST 请求到 ChatGPT API,并使用 ArduinoJson 库解析返回的 JSON 响应。提取 ChatGPT 的回复以进行后续处理,如语音播放或设备控制。
设备控制功能:
示例 3 演示了如何使用 ChatGPT 的回复来控制设备(如开关灯)。通过解析回复中的关键字,ESP32 可以执行相应的操作,展示了智能语音助手的实际应用。
文本转语音(TTS):
示例 2 中假设使用某个文本转语音库(如 TTS)将 ChatGPT 的回复转换为语音播放。这样的设计可以增强用户体验,使助手更加智能和互动。

在这里插入图片描述
4、 基础语音助手

#include <WiFi.h>
#include <HTTPClient.h>
#include "VoiceRecognitionV3.h"
#include <TTS.h> // 假设有一个TTS库用于语音合成

const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD";
const char* apiKey = "YOUR_API_KEY";
const char* apiEndpoint = "https://api.openai.com/v1/chat/completions";

VoiceRecognitionV3 voice;
TTS tts;

void setup() {
    Serial.begin(115200);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(500);
        Serial.print(".");
    }
    Serial.println("Connected to WiFi");

    if (voice.begin()) {
        Serial.println("Voice Recognition Initialized");
    } else {
        Serial.println("Voice Recognition Initialization Failed");
    }

    tts.begin(); // 初始化语音合成
}

void loop() {
    int voiceCommand = voice.recognize();
    if (voiceCommand >= 0) {
        String userInput = getVoiceCommandText(voiceCommand);
        String response = sendChatRequest(userInput);
        tts.speak(response); // 语音合成输出
    }
}

String getVoiceCommandText(int command) {
    switch (command) {
        case 0: return "Hello, ChatGPT!";
        case 1: return "What is the weather today?";
        default: return "Unknown command";
    }
}

String sendChatRequest(String userInput) {
    HTTPClient http;
    http.begin(apiEndpoint);
    http.addHeader("Content-Type", "application/json");
    http.addHeader("Authorization", String("Bearer ") + apiKey);

    String requestBody = R"({
        "model": "gpt-3.5-turbo",
        "messages": [{"role": "user", "content": ")" + userInput + R"("}]
    })";

    int httpResponseCode = http.POST(requestBody);
    String response;

    if (httpResponseCode > 0) {
        response = http.getString();
    } else {
        Serial.println("Error on sending POST: " + String(httpResponseCode));
        response = "Error occurred";
    }
    http.end();
    return response;
}

要点解读:
WiFi连接:程序首先连接到WiFi,确保能够进行HTTP请求。
语音识别与合成:使用VoiceRecognitionV3库进行语音识别,结合一个假设的TTS库进行语音合成,提供完整的语音交互。
API请求:通过HTTP POST请求将用户输入发送到ChatGPT,并获取响应。
语音输出:将ChatGPT的响应通过语音合成输出,增强用户体验。
错误处理:处理HTTP请求中的错误,确保程序的健壮性。

5、生活助手功能

#include <WiFi.h>
#include <HTTPClient.h>
#include "VoiceRecognitionV3.h"
#include <TTS.h>

const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD";
const char* apiKey = "YOUR_API_KEY";
const char* apiEndpoint = "https://api.openai.com/v1/chat/completions";

VoiceRecognitionV3 voice;
TTS tts;

void setup() {
    Serial.begin(115200);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(500);
        Serial.print(".");
    }
    Serial.println("Connected to WiFi");

    if (voice.begin()) {
        Serial.println("Voice Recognition Initialized");
    } else {
        Serial.println("Voice Recognition Initialization Failed");
    }

    tts.begin();
}

void loop() {
    int voiceCommand = voice.recognize();
    if (voiceCommand >= 0) {
        String userInput = getVoiceCommandText(voiceCommand);
        String response = sendChatRequest(userInput);
        tts.speak(response);
    }
}

String getVoiceCommandText(int command) {
    switch (command) {
        case 0: return "What time is it?";
        case 1: return "Set a reminder.";
        case 2: return "Tell me a joke.";
        default: return "Unknown command";
    }
}

String sendChatRequest(String userInput) {
    HTTPClient http;
    http.begin(apiEndpoint);
    http.addHeader("Content-Type", "application/json");
    http.addHeader("Authorization", String("Bearer ") + apiKey);

    String requestBody = R"({
        "model": "gpt-3.5-turbo",
        "messages": [{"role": "user", "content": ")" + userInput + R"("}]
    })";

    int httpResponseCode = http.POST(requestBody);
    String response;

    if (httpResponseCode > 0) {
        response = http.getString();
    } else {
        Serial.println("Error on sending POST: " + String(httpResponseCode));
        response = "Error occurred";
    }
    http.end();
    return response;
}

要点解读:
多功能性:支持多种生活助手功能,用户可以通过语音询问时间、设置提醒或请求笑话。
灵活交互:通过不同的语音命令实现多样化的交互,满足用户需求。
实时反馈:系统能够快速响应用户的请求,提升用户体验。
语音合成:将ChatGPT的回答通过语音合成技术进行输出,使得交互更加自然。
错误处理:确保在请求失败时给出合适的反馈,提升系统的稳定性。

6、个人化问答助手

#include <WiFi.h>
#include <HTTPClient.h>
#include "VoiceRecognitionV3.h"
#include <TTS.h>

const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD";
const char* apiKey = "YOUR_API_KEY";
const char* apiEndpoint = "https://api.openai.com/v1/chat/completions";

VoiceRecognitionV3 voice;
TTS tts;
String userName = "User"; // 用户名称,可以在设置中进行更改

void setup() {
    Serial.begin(115200);
    WiFi.begin(ssid, password);

    while (WiFi.status() != WL_CONNECTED) {
        delay(500);
        Serial.print(".");
    }
    Serial.println("Connected to WiFi");

    if (voice.begin()) {
        Serial.println("Voice Recognition Initialized");
    } else {
        Serial.println("Voice Recognition Initialization Failed");
    }

    tts.begin();
}

void loop() {
    int voiceCommand = voice.recognize();
    if (voiceCommand >= 0) {
        String userInput = getVoiceCommandText(voiceCommand);
        String personalizedInput = userInput + " " + userName; // 个人化输入
        String response = sendChatRequest(personalizedInput);
        tts.speak(response);
    }
}

String getVoiceCommandText(int command) {
    switch (command) {
        case 0: return "What is my schedule for today?";
        case 1: return "How are you?";
        case 2: return "Give me some advice.";
        default: return "Unknown command";
    }
}

String sendChatRequest(String userInput) {
    HTTPClient http;
    http.begin(apiEndpoint);
    http.addHeader("Content-Type", "application/json");
    http.addHeader("Authorization", String("Bearer ") + apiKey);

    String requestBody = R"({
        "model": "gpt-3.5-turbo",
        "messages": [{"role": "user", "content": ")" + userInput + R"("}]
    })";

    int httpResponseCode = http.POST(requestBody);
    String response;

    if (httpResponseCode > 0) {
        response = http.getString();
    } else {
        Serial.println("Error on sending POST: " + String(httpResponseCode));
        response = "Error occurred";
    }
    http.end();
    return response;
}

要点解读:
个性化体验:通过添加用户名称,实现个性化交互,让用户感受到更贴心的服务。
多样化功能:支持用户询问日程、情感状态或获取建议,适应不同场景需求。
实时语音合成:将ChatGPT的回答通过语音合成技术输出,使得交流更加自然流畅。
灵活扩展:可以根据用户的反馈和需求轻松添加新的命令或功能。
健壮性:通过错误处理确保系统在出现问题时能给出明确反馈,增强用户信任感。

总结
以上几个案例展示了如何使用ESP32构建智能语音助手并与ChatGPT交互。关键点包括:
WiFi连接:确保设备能够访问互联网,进行API请求。
语音识别与合成:结合语音识别和合成技术,实现自然的语音交互。
API请求:通过HTTP请求将用户输入发送至ChatGPT,获取实时反馈。
个性化交互:根据用户的请求和信息提供个性化的响应,提升用户体验。
错误处理:确保在请求失败时能够给出适当的反馈,增强系统的稳定性和可靠性。

注意,以上案例只是为了拓展思路,仅供参考。它们可能有错误、不适用或者无法编译。您的硬件平台、使用场景和Arduino版本可能影响使用方法的选择。实际编程时,您要根据自己的硬件配置、使用场景和具体需求进行调整,并多次实际测试。您还要正确连接硬件,了解所用传感器和设备的规范和特性。涉及硬件操作的代码,您要在使用前确认引脚和电平等参数的正确性和安全性。

在这里插入图片描述

### 如何使用ESP32构建语音助手 #### 构建语音助手的核心组件 构建基于ESP32语音助手通常涉及硬件配置、固件烧录以及软件开发。以下是几个关键部分及其对应的实现方法: 1. **语音识别库的选择** 使用`esp-skainet`库可以轻松集成语音命令功能到ESP32项目中[^1]。该库支持多种语音指令集,并允许开发者自定义关键词列表。 2. **模型部署与推理** 对于更复杂的自然语言处理需求,可以通过Ollama工具链将大型语言模型(LLM)如DeepSeek部署至边缘设备上运行[^2]。这种方法不仅减少了云端依赖还提高了实时响应速度。 3. **物联网平台连接** 如果希望增加更多智能化特性比如远程控制家电,则需借助ESP-IDF框架完成网络通信设置并编写相应的业务逻辑代码[^3]。 #### 示例代码展示 下面给出一段简单的Python脚本作为参考,它展示了如何利用上述提到的技术栈来创建一个基础版本的语音助理程序: ```python import espskai as skai # 导入espskai模块用于语音识别 def recognize_speech(): recognizer = skai.Recognizer() while True: audio_data = get_audio_from_microphone() # 获取麦克风输入数据 result = recognizer.recognize(audio_data) # 调用recognize函数解析音频流 process_command(result.text) # 将识别结果传递给后续处理器 if __name__ == "__main__": initialize_hardware() # 初始化必要的外围电路 recognize_speech() # 开始循环监听用户声音请求 ``` 此段伪代码仅作示意用途,在实际应用前还需补充具体细节如错误捕获机制等。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驴友花雕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值