从德摩根到布尔 布尔逻辑之二
莱布尼兹在17世纪那个时候就认识到,逻辑学所考察的概念和算术中的数字有类似之处。这种类似主要表现在,这两种对象似乎都可以采用某种操作运算,来造成操作对象的变形转换。算术中的数字对象可以用加减乘除来进行运算,而所谓概念的运算,虽不是加减乘除,但我们对于概念的“或者”连接,还有对于概念的“并且”连接,却很有算术中的“加法”或者“乘法”的味道。
把莱布尼兹《普遍语言的两个片断》作为书末附录的《符号逻辑概览》一书,该书由后来的模态逻辑创始人刘易斯(C.I.LEWIS)1918年所著。刘易斯在莱布尼兹片断的导言中,这样来说明莱布尼兹的逻辑加和逻辑或:
“在莱布尼兹这两个片断中,A+B可以用两种方式来加以解释:1)在内涵中既是A又是B。2)在外延中,可以理解为或者A或者B。而逻辑上的刻画主要遵从上述第一种解释,但在片断二中,则是外延中的类。”(刘易斯《符号逻辑概览》第373页)
这似乎表明,早在17世纪晚期,莱布尼兹就已经认识到,概念的析取与合取,也就是所谓逻辑加和逻辑或,这两个逻辑上的连接词,它们和算术的加法和乘法有某种类似之处。但可惜的是,莱布尼兹感觉到这一点,却没有找