从德摩根到布尔 布尔逻辑之二

本文介绍了布尔逻辑的发展历程,从莱布尼兹的初步认识,到德摩根的贡献,尤其是德摩根定律在现代逻辑中的重要性。布尔与德摩根的相遇,为逻辑学的数学化奠定了基础,同时也揭示了逻辑运算与算术运算之间的相似性。此外,文章还提及了与布尔和德摩根同时代的英国数学家们,如巴贝奇,他们在推动逻辑学和计算机科学进步方面发挥了关键作用。
摘要由CSDN通过智能技术生成

 从德摩根到布尔 布尔逻辑之二

 

莱布尼兹在17世纪那个时候就认识到,逻辑学所考察的概念和算术中的数字有类似之处。这种类似主要表现在,这两种对象似乎都可以采用某种操作运算,来造成操作对象的变形转换。算术中的数字对象可以用加减乘除来进行运算,而所谓概念的运算,虽不是加减乘除,但我们对于概念的“或者”连接,还有对于概念的“并且”连接,却很有算术中的“加法”或者“乘法”的味道。

把莱布尼兹《普遍语言的两个片断》作为书末附录的《符号逻辑概览》一书,该书由后来的模态逻辑创始人刘易斯(C.I.LEWIS)1918年所著。刘易斯在莱布尼兹片断的导言中,这样来说明莱布尼兹的逻辑加和逻辑或:

 

“在莱布尼兹这两个片断中,A+B可以用两种方式来加以解释:1)在内涵中既是A又是B。2)在外延中,可以理解为或者A或者B。而逻辑上的刻画主要遵从上述第一种解释,但在片断二中,则是外延中的类。”(刘易斯《符号逻辑概览》第373页)

 

这似乎表明,早在17世纪晚期,莱布尼兹就已经认识到,概念的析取与合取,也就是所谓逻辑加和逻辑或,这两个逻辑上的连接词,它们和算术的加法和乘法有某种类似之处。但可惜的是,莱布尼兹感觉到这一点,却没有找

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值