摘要:了解一个大脑区域如何在体内对另一个区域施加影响,这在很大程度上受到用于推断或预测定向连接的模型的限制。尽管这种神经相互作用依赖于大脑的解剖结构,但在宏观尺度上,结构(或解剖)连接是否能为定向连接模型提供有用的约束仍不清楚。在这里,我们回顾了关于这个问题的当前研究现状,强调了基于推断的有效连接和基于预测的定向功能连接之间的关键区别。我们探讨了将结构连接整合到定向连接模型中的方法:通过先验分布、状态空间模型中的固定参数以及结构学习算法的输入。虽然有证据表明整合结构连接能显著改进定向连接模型,但缺乏对可靠性和样本外有效性的评估。在这篇综述的结尾,我们提出了未来研究的策略,以应对当前的挑战,并找出推进结构连接和定向连接整合的机会,最终增进对健康和患病大脑的理解。
1. 引言
神经元之间的通信本质上是有方向的,这是由动作电位沿轴突的单向传播所驱动的。这种通信涉及信息从一个源(在某个时间点)传递到一个目标(在未来的某个时间点),这就要求神经元(如大脑区域)在解剖学上是相互连接的。在人类中,这种信息传递在体内无法直接观察到,但诸如磁共振成像(MRI)、脑电图(EEG)或脑磁图(MEG)等非侵入性神经成像技术,已经为促进这种传递的神经动力学和结构通路提供了大量信息。例如,功能磁共振成像(fMRI)测量与潜在神经元活动相关的血氧水平依赖(BOLD)信号的时间演变。比较 BOLD 信号可以得出功能连接的度量(不同大脑区域活动之间的零延迟 “静态” 相关性,它不编码关于时间动态的信息)。此外,扩散加权成像(一种捕获水分子定向扩散率的 MRI 采集技术),通过添加纤维束成像,有助于重建神经束(在大脑区域之间双向延伸的轴突束),从而得到结构连接的无向度量。
在神经成像领域,关联结构和功能连接的模型引起了广泛关注。从根本上说,这些模型旨在解决结构 - 功能关系的问题:大脑的解剖结构(区域之间的物理连接方式)如何产生其活动(这些区域如何通信以产生认知和行为)。然而,依赖于预测功能连接的模型在阐明表征大脑中从源到目标通信的因果(有方向且与时间相关)影响方面存在固有限制。因此,这类模型只能提供结构 - 功能关系的部分视图。
为了描述大脑的定向连接,即捕捉目标区域中神经元的净活动如何受到源区域中神经元净活动的影响,人们必须将基于推断或基于预测的模型应用于功能时间序列数据(或其二阶统计量的演变),与基于相关性(功能连接)的模型相比,这些模型更为复杂。为了更全面地了解大脑解剖结构对大脑通信的影响,研究越来越多地集中在将结构连接整合到定向连接模型中。原则上,结构连接应该为定向连接提供有用的约束:假设神经元倾向于通过在 MRI 宏观尺度上可检测到的主要神经束进行相互作用,这并非不合理。然而,将结构连接整合到定向连接中仍然是一个未解决的挑战,并不简单:例如,大多数功能连接对应于多跳而非单跳的结构连接(方框 1)。因此,缺乏两个区域之间的结构连接证据,充其量只能降低我们对它们之间存在强定向连接的信心。相比之下,可能的情况是,如果没有嵌入结构连接的连接组,以及信号如何在多跳结构连接中传播的模型,任何单一的结构连接对两个区域之间的定向连接提供的见解都很有限。
在这篇综述中,我们讨论了当前在应对整合结构连接和定向连接这一挑战方面的进展,强调了不同研究中的几个有用的方法二分法和共性。鉴于许多方法旨在确定神经元之间相互作用的方向,我们将讨论限制在结合了结构连接和时间索引(动态)神经生理数据的方法上,因为没有这些数据,就无法确定时间先后顺序(这是推断因果影响的必要但不充分条件)。因此,我们不涵盖将多变量神经生理数据分离为无向空间图(如功能连接)的方法,也不讨论旨在预测这些数据的模型(无论是否基于结构信息)。尽管本文讨论的许多工作都是基于 fMRI 的,但大多数方法是通用的,可以应用于其他功能性神经成像模态的背景下。首先,我们对定向连接进行了教学式的介绍,阐明了基于推断的有效连接和基于预测的定向功能连接之间的区别。接下来,我们讨论了如何通过主要由模型证据或预测准确性评估,将结构连接整合到定向连接模型中,从而显著改进这些模型。最后,鉴于缺乏对可靠性和样本外有效性的评估,且评估模型预测有效性的实施研究仍然很少,我们讨论了未来研究的策略,以解决这些问题和其他问题。
图1 功能磁共振成像背景下的生成性和通用状态空间模型。
2. 定向连接
定向连接模型描述了神经元之间从源到目标的定向通信。与通过分析数据的零延迟协方差得出有向图的模型(如路径分析)不同,我们讨论的定向连接模型是动态系统的时间先后顺序模型,其中过去影响或预测未来。在神经成像中,由于对与源到目标通信相关的所有变量的访问有限,在这些动态系统中区分可观测和不可观测变量至关重要。在这里,状态空间模型作为一个通用且灵活的框架出现,能够适应观测变量和未观测变量之间的时空相互作用,实际上我们讨论的所有定向连接方法都可以用这个框架来表示。
2.1 状态空间建模
状态空间模型起源于控制工程,应用于对动态系统的时间序列观测(例如飞行中飞机的雷达读数),并利用过去的观测来推断,在某些情况下,通过输入来控制支配系统的未观测状态变量的当前状态或值(例如飞机的速度和位置)。通常,这类模型由一个状态方程和一个观测方程组成,可以用连续时间或离散时间来表述。状态方程描述了系统的状态变量如何随时间演变,其中转移矩阵表示当前状态如何影响未来状态。然后,观测方程将这些状态变量与预测的观测值联系起来。
通过定义当前状态和输入如何控制未来状态,状态空间模型可以使系统动态中固有的因果关系变得明确。因此,当应用于神经成像数据时,某些状态空间模型可以帮助将观测到的大脑动态分解为其潜在状态,深入了解不同神经元如何随时间相互作用(定向连接),并允许对输入的变化如何导致状态和输出的变化进行建模。在这些模型中,最突出的有动态因果建模(DCM)、多元自回归(MVAR)模型和动态贝叶斯网络(DBNs),它们为与认知功能和行为相关的神经动力学提供了见解。然而,在回顾这些方法的应用之前,我们先介绍两个关键的二分法:有效连接与定向功能连接,以及推断与预测。
2.2 有效连接与定向功能连接
定向连接可以分为有效连接和定向功能连接。根据最通用和与模态无关的定义,这种区分取决于状态空间模型中的状态方程是否代表了一个未被观测到的、物理上的原因,即一种有效机制,它是(生物)系统可观测动态的基础。因此,在 fMRI 的背景下,有效连接适用于生成模型,这些模型试图解决一个逆向问题,即未被观测到的原因(从源到目标对神经元群体活动变化率的调制以及由此产生的与神经元活动相关的血流动力学变化)如何导致观测到的 BOLD 时间序列数据。相比之下,定向功能连接涉及直接从状态到数据的映射模型,其中状态转换编码了观测变量之间的依赖关系,而不指定潜在的原因。
虽然有效连接模型提供了更强的可解释性(通常包含描述脱氧血红蛋白含量水平下区域脑血流量的参数),但定向功能连接模型具有更强的可扩展性,使其更适合高效的大规模数据分析。如果目标是获得机制性解释,人们可能会选择前者;而如果重点是对大型数据集进行探索性分析,在这种情况下简化假设(如大脑区域的独立性或神经元活动、噪声和血流动力学效应的合并)是可以接受的,人们可能会更喜欢后者。
在图1a 中,我们提供了一个简单有效连接模型的示意图:一种由 Daunizeau 等人提出的线性、随机、连续时间动态因果模型。这个模型描述了驱动信号(如内源性神经元波动)如何导致状态转换(由不同神经元群体之间的相互作用驱动的神经元群体活动变化,即有效连接),进而产生输出(BOLD 信号强度的百分比增加;图 1a)。通过生成复制经验数据(在这个例子中,使用 fMRI 记录)的合成数据,这样的有效连接模型可以被 “反转”。也就是说,可以优化模型参数,以便从效果(观测数据)“反向” 推导到原因(未观测到的机制)。
为了简化这个有效连接模型,可以通过离散化连续时间状态空间方程(包括状态和观测方程),用单位矩阵替换血流动力学响应函数(HRF),并假设单一误差源,得到一阶 MVAR 模型(图 1a)。在这样的模型中,状态变量已被观测到的多变量时间序列的过去值所取代,使其成为一种适用于任何时间序列数据的通用方法。随着向离散时间的转变,状态转换不再控制状态变量的瞬时变化率,而是控制它们在下一个时间步的变化率(受观测时间序列数据的时间分辨率限制)。此外,由于状态变量被观测数据所取代,状态转换描述了在排除所有区域过去活动的影响后,一个大脑区域的滞后活动如何预测另一个区域的未来活动。因此,当应用于动态神经生理数据时,这个一阶 MVAR 模型产生了一个预测关系图,称为 “定向功能连接”。这样的模型可以被视为状态空间模型,但只是在依赖状态和观测之间的恒等映射的表面意义上。为了对各种模型进行一般性的表述,我们广泛使用 “状态空间模型” 这个术语,使其包括 MVAR 模型。
2.3 推断与预测
通过这种方式,有效连接和定向功能连接与推断和预测这两个不同但又相互关联的科学目标相关。在整篇综述中,我们使用 “推断” 一词来指代对被认为导致观测数据的未观测变量得出结论,但我们认识到它在不同领域的用法有所不同(例如,在人工智能中,推断通常指使用训练好的模型来处理实时数据并生成预测)。
有效连接模型是基于生物物理学的(针对特定问题定制),其应用往往由知识驱动(旨在检验特定假设)。然而,为了使这些模型在生物学上合理,它们必然是高维的(例如,在大多数 DCM 变体中,每增加一个感兴趣区域,模型复杂度就会呈四次方增加)。此外,为了符合生物学合理性,这些模型总是包含非线性因素,这使得无法得到唯一解(例如,在许多 DCM 变体的血流动力学部分,血流、血容量和氧提取之间存在非线性相互作用)。因此,反转有效连接模型通常需要对模型参数审慎地应用基于经验的合理约束,而不是简单地找到使合成数据和经验数据之间差异最小的模型参数值。
这些建模方法以互补的方式重叠。一项研究通常包括模型反转,然后进行预测验证(例如通过留一法交叉验证)。事实上,这种样本外测试对于确保基于推断和基于预测的模型的泛化性至关重要(特别是对于像 DCM 这样的高维模型)。同样,在实践中,为了验证推断机制的合理性,基于推断的模型通常需要证明其预测有效性(实际上,使用这些模型获得的参数越来越多地被用于大规模基于预测的模型中)。作为补充,对观测数据模式的可靠预测可以暗示潜在的机制,值得使用基于推断的方法进行研究。
这就是贝叶斯更新作为一种强大工具的用武之地。贝叶斯方法不是寻求明确的解决方案,而是将对模型参数的不确定性表示为概率,并根据观测数据更新这些概率。为了激发使用这些方法背后的直觉,假设有人假设两个区域之间的有效连接不太可能存在,即一个区域的神经元活动对另一个区域的状态转换没有影响。如果有证据表明从每个区域记录的功能活动之间存在相关性,那么这个人可能会更新(或修正)这个假设(或先验信念)。然而,更新的程度将取决于对假设和数据的信心程度。
DCM 由 Friston 等人于 2003 年首次提出,历史上它涉及使用拉普拉斯近似下的变分贝叶斯方法对生成状态空间模型进行反转。根据拉普拉斯近似,假设模型参数的真实后验分布在其模态附近是高斯分布,就可以构建一个变分(近似后验)分布。然后,模型反转作为一个优化过程进行,其中变分自由能被最大化。这个变分自由能是(对数)边际似然的下限,在这种情况下,最大化它相当于找到一个近似后验分布的参数,该参数能在模型拟合和模型复杂度(分别由贝叶斯规则分子中的似然和先验捕获)之间实现最佳平衡。方便的是,边际似然(或模型证据)便于直接进行模型比较,其中贝叶斯因子代表在竞争模型下分配给一组给定观测值的模型证据之比,允许对替代(反转)动态因果模型进行比较(例如,在哪些区域之间的有效连接被设置为零方面有所不同)。因此,DCM 不仅通过模型反转促进了有效连接的推断,还指导选择能很好解释观测数据的最简单网络结构。
相比之下,由 Harrison 等人于 2003 年首次应用于 fMRI 数据的通用 MVAR 型定向功能连接模型,可以以模式引导或数据驱动的方式应用(在没有特定假设的情况下)。这些模型主要关注基于过去的观测来预测未来数据,而不是推断潜在的因果机制,并且通常使用维纳 - 格兰杰因果检验(或其非参数对应方法,传递熵)来评估这些预测的统计显著性。
这些定向功能连接模型的相对简单性意味着它们可以通过解析方法拟合高维数据,使用普通最小二乘法等方法进行参数估计。然而,这种简单性也意味着这类模型中与自回归状态转换相关的参数需要仔细解释。
例如,将通用 MVAR 型模型应用于来自神经像素探针的高分辨率记录,将提供关于定向功能连接的精细预测,这些预测可以与动作电位相关联进行解释(目前专注于神经元群体活动的 DCM 变体都不适合这项任务)。然而,如果将 MVAR 模型应用于 fMRI 数据,状态转换的解释就不那么明确了。考虑到目前 fMRI 时间分辨率的限制,所考虑的最小时间步长通常在秒的量级(比通过神经像素可记录的神经元活动的时间尺度大几个数量级)。尽管存在观测噪声和系统时间常数的准确测量问题,但如果神经元活动的血流动力学响应在幅度和持续时间上是不变的,那么这个时间步长差异对于根据神经元通信来解释状态转换不会构成太大障碍。然而,有证据表明血流动力学响应在不同大脑区域有所不同(需要针对特定问题的方法来解析),因此可以合理地假设情况并非如此。
因此,根据数据特征(如时间分辨率和信噪比),MVAR 型定向功能连接模型中编码的预测可能相当粗糙。然而,这并不是说这些模型在应用于fMRI 数据时没有用处。它们的简单性和计算效率允许快速评估给定大脑网络内的假定定向影响,使其成为生成假设的有价值的探索工具。此外,正如后面一节所讨论的(见 “嵌入方法”),将结构连接整合到 MVAR 模型中,以及在数据拟合之前从BOLD 信号中解卷积神经元活动估计,都有可能在将此类模型应用于 fMRI 数据时显著提高其准确性和预测有效性。
图2 基于贝叶斯、嵌入和机器学习的方法为定向连接模型提供结构信息。
3. 基于结构信息的定向连接模型
在考虑我们所讨论的这类推断和预测问题时,两个大脑区域的结构连接程度可能会影响人们对它们之间定向连接假设的信心。同样,关于一个大脑区域的活动对输入的小变化有多敏感的假设,可能会受到该区域与其他区域结构连接程度的信息的影响。或者,如果考虑全脑定向连接网络,人们对假设的网络结构的信心可能会受到它与全脑结构连接相似程度的影响。这些是表征该研究领域的一些关键主题和问题。
在本节中,我们在两个领域对比基于结构信息的建模方法:有效连接和定向功能连接。首先,我们关注将结构连接整合到有效连接模型中的一类方法 —— 贝叶斯方法,该方法涉及用基于结构连接的先验假设来约束状态空间模型的反转(图 2a)。接下来,我们涵盖定向功能连接模型的三类方法:贝叶斯方法;一种嵌入方法,涉及将结构连接作为固定参数直接纳入状态空间模型,而不是塑造其他自由参数的先验(图 2b);以及一种基于机器学习(ML)的方法,涉及使用各种 ML 技术将结构和功能神经成像数据整合到结构学习算法中(图 2c)。
3.1 基于结构信息的有效连接模型
有效连接研究采用贝叶斯方法将结构连接整合到 DCM 中(图 2a)。这种贝叶斯方法涉及推导反映结构连接和状态空间模型特定参数之间依赖关系的先验分布(图 2a,前三个面板)。尽管这种方法在有效连接文献中占主导地位,但并没有什么阻止将结构信息嵌入到有效连接的生成模型中,或者利用基于 ML 的工具来辅助推断基于结构信息的有效连接。事实上,这些嵌入和基于 ML 的方法为未来的有效连接研究提供了有前景的途径。
2009 年,Stephan 等人进行了第一项采用贝叶斯方法的研究,他们使用基于任务的确定性 DCM 和来自执行决策任务的参与者的 fMRI 数据,将结构连接整合到有效连接中。这种整合假设两个区域之间非零有效连接的先验概率应与通过纤维束成像估计的相应结构连接权重成比例。为了对这一假设进行建模,作者为区域间有效连接参数配备了基于连接特定结构连接的先验(图 2a)。具体来说,Stephan 等人将先验方差项建模为归一化结构连接权重的逻辑函数。通过网格搜索探索了一个很大的可能参数空间(模型空间),用于结构到方差的映射,每个参与者的每个候选模型都使用 VBL 进行反转,并根据其模型证据进行评分。结果表明,平均而言,正单调的结构到方差映射使模型证据最大化。换句话说,对于大多数参与者来说,那些结构连接越强导致先验方差越大(增加区域之间非零有效连接的先验概率)的模型,能最好地解释观测数据。
大约十年后,Sokolov 等人通过将结构连接整合到组水平的有效连接模型中,扩展了这一方法。首先,这种方法涉及对组水平有效连接的贝叶斯随机效应(RFX)模型进行反转,该模型使用通过 DCM 获得的个体水平后验分布作为输入。其次,贝叶斯模型约简(BMR)事后探索了基于结构的先验对组水平有效连接的影响。对于任何初始反转的贝叶斯模型,BMR是一种分析方法,用于推导具有不同先验的替代模型的模型证据和后验分布。例如,它能够比较一个状态转移先验以零为中心的模型和一个先验以非零值为中心的替代模型。
在 Sokolov 等人的研究中,BMR 能够对代表不同结构到方差映射参数化的大型模型空间进行高效评分,揭示出正单调函数能显著提高组水平贝叶斯 RFX 模型的模型证据。此外,在使用相同样本的二次分析中,当结构到方差映射为正单调函数时,应用类似的 BMR 程序能显著提高个体水平动态因果模型的模型证据。因此,通过引入高效的分析技术,这项研究解决了早期工作中的关键问题,这些问题可能限制了其应用;即反转数百个不同的动态因果模型的计算成本很高(需要数小时到数天时间),并且在比较替代的多主体模型时需要考虑个体间的变异性(与固定效应分析不同,在固定效应分析中所有主体的模型权重相等)。
代表该文献中最新颖整合程序的是,2021 年 Frässle 等人的一项研究使用回归 DCM 将结构连接整合到全脑有效连接网络中(包含 200 多个脑区)。使用 DCM 研究如此大规模的有效连接网络需要引入几个简化假设,以降低模型复杂度并加快模型反转速度。例如,这些假设包括所有脑区的 HRF 是一个单一的、固定的(硬编码的)双伽马函数;以及转移矩阵的传出(外向)部分是独立的 —一种平均场假设,这使得可以分别(逐个区域地)推断有效连接的均值和方差。暂且不论这些假设的合理性如何,作者通过概率稀疏性约束将结构连接整合到回归 DCM 中。通过在似然函数中对二元指示变量(转移矩阵中的每个条目对应一个)进行伯努利先验编码,这种稀疏性约束(或特征选择器)通过允许某些有效连接被包含或排除来影响网络结构。这项工作将通过概率纤维束成像获得的权重视为这些伯努利先验的包含概率,并发现基于结构信息的模型在模型证据方面优于无信息的替代模型。
需要注意的是,本节中讨论的大多数发现都基于对竞争模型的比较— 这些模型使用来自单个数据集的数据进行反转,并通过模型证据进行评估。因此,尽管这些发现支持基于结构先验的模型的统计结论效度(它们与结构约束功能这一普遍观点一致),但它们几乎无法确定一组特定的基于结构的先验的稳健性,或者结构连接和有效连接之间假设的单调关系。在接下来讨论较少生物物理细节但使用类似启发式方法构建基于结构的先验,并且通过评估其他形式的效度(如预测效度)超越统计结论效度评估的模型时,必须牢记这一局限性。
3.2 基于结构信息的定向功能连接模型
在本节中,我们不再关注之前讨论的 DCM,而是讨论基于结构信息的定向功能连接模型,其中大多数是 MVAR 模型的变体。与动态因果模型不同,这些模型主要关注从过去的观测中预测未来数据(而不是描述有效机制)。尽管它们具有普遍性,但通过贝叶斯、嵌入和基于 ML 的方法纳入基于结构连接的约束,可以增强这些模型的生物学相关性(图 2)。
3.2.1 贝叶斯方法
尽管 Stephan 等人采用的方法(图 2a)已在应用于 MEG 数据的 MVAR 模型背景下进行了微小修改后应用,但 Chiang 等人在定向功能连接领域提出了一种新颖的贝叶斯方法。这项工作涉及一个贝叶斯MVAR 模型,该模型允许同时估计个体水平和组水平的定向功能连接:个体水平转移矩阵中编码的权重被视为相对于组水平转移矩阵中编码的权重的随机偏差。在组水平上,逻辑回归先验根据从基于 MRI 的皮质厚度测量的结构协方差分析得出的结构连接数据,为组水平转移矩阵中的每个权重提供非零的概率估计。然后,这些概率估计用于伯努利变换,生成二元指示符,以确定状态转移参数是从尖峰(零)还是平板(零均值高斯)先验成分中抽取。
这项工作有几个值得强调的特点。首先,贝叶斯 MVAR 模型不仅识别出了颞叶癫痫的病例 - 对照差异,还通过使用手工编码的结构连接和通过随机 MVAR 过程生成的时间序列数据进行的计算机模拟分析,证明它能够准确估计真实的转移权重,支持了其表面效度。其次,与典型的两阶段估计方法相比,同时估计个体水平和组水平的定向功能连接要准确得多,支持了其结构效度。第三,尽管逻辑回归映射缺乏直接的解释,但使用贝叶斯更新方法为其截距和斜率产生了高斯后验,这使得可以评估参数的不确定性 —— 与通过网格搜索选择参数值而不评估不确定性的相关工作形成对比。
此时,必须认识到 Chiang 等人的贝叶斯 MVAR 模型以及所有其他时不变 MVAR 模型都假设观测值是平稳的(即它们的协方差随时间保持不变)。这在静息状态下通常是一个合理的假设,尽管并非毫无争议;然而,基于任务或事件相关的神经成像时间序列数据往往是非平稳的。因此,在这种非平稳的情况下,时变 MVAR 模型(每个时间步都有一个转移矩阵)似乎很有用,特别是对于使用具有高时间分辨率的神经成像模态(如 EEG)获得的时间序列数据。
最近,一个应用于事件相关的人类头皮 EEG 和大鼠颅骨表面 EEG 的时变MVAR 模型以类似贝叶斯的方式整合了结构连接。该模型将定向功能连接概念化为内源性波动的卡尔曼滤波。简而言之,该方法涉及在每个时间点递归地更新预测的当前状态和误差协方差,通过将它们与当前观测值相结合,并由卡尔曼增益加权。卡尔曼滤波器通过对当前观测值施加惩罚来引入结构连接,相对较弱或较强的结构连接分别导致转移权重的收缩增加或减少。因此,这种时变 MVAR 模型的实现是一种类似贝叶斯正则化的形式(它对过于复杂的模型进行惩罚)。对于人类和大鼠,与未纳入基于结构连接惩罚的模型相比,这些基于结构信息的模型在低信噪比下表现出更强的稳健性,并且在预期的事件后潜伏期更准确地识别转移矩阵中的传出权重。因此,通过在两个物种中建立统计结论效度,这些发现为支持时变 MVAR 模型的跨物种效度提供了一定的依据(表明其有可能推广到其他情境)。然而,鉴于下采样会降低时变 MVAR 模型的准确性,人们可以预见到在低时间分辨率的神经成像模态(如 fMRI)背景下应用这样的模型会存在问题。
这个时变 MVAR 模型以及所有使用这种贝叶斯方法的有效连接和定向功能连接模型的另一个局限性是,它们在多大程度上体现了关于结构 - 功能关系的明确、可测试的假设存在模糊性。换句话说,这项工作的大部分可以总结为结构连接是定向连接的正则化因子。然而,这个正则化因子的说法非常抽象,并没有明确映射到特定的生物学机制。接下来,我们考虑一种比贝叶斯方法更不抽象的替代方法:将结构连接直接作为固定参数整合到状态空间模型中,从而对结构连接和状态动态之间的函数形式做出明确的假设。
3.2.2 嵌入方法
Fukushima 等人在一项 MEG 研究中提出了最早采用这种方法的模型之一。在他们的贝叶斯 MVAR 模型中,整合规则(图 2b)非常简单:两个节点之间非零的定向功能连接取决于相应的非零结构连接。这里的明确假设是,大脑从源到目标的通信仅通过直接路径进行,与前面章节讨论的模型不同,这种方法要求根据某个阈值对结构连接进行二值化(图 2b)。尽管这个直接路由假设很简单,但这种嵌入方法在多项定性和定量分析中都显示出了实用性,并且 Fukushima 等人使用的整合规则已变得很常见。
也许,采用这种整合规则且通过在一系列神经精神疾病中的应用确立了其预测效度的最突出模型,是 Gilson 等人提出的模型。该模型的状态方程基于多元 Ornstein - Uhlenbeck 过程,可以表示为一个随机常微分方程(图 2b)。与动态因果模型不同,其参数是通过将状态变量的协方差(在一个估计的滞后上)拟合到 fMRI 时间序列数据的滞后和零滞后协方差来估计的(图 2b,第四个面板)。因此,尽管 Gilson 等人的模型可以生成丰富的状态动态,但它最终预测的数据特征反映了神经元活动、血流动力学和其他因素的综合(换句话说,它是通用的)。
这种多元 Ornstein - Uhlenbeck 过程模型可以被视为将具有良好研究特性的动态过程与神经成像数据的二阶统计量联系起来的更广泛努力的一部分(关于相关问题的讨论,见 “提高生物学可解释性的方法创新”)。Hopf 分岔模型是为这一努力做出贡献的另一个模型示例,最近 Rolls 等人对其进行了修改,用于定向连接分析。基于静息态大脑活动的动态接近分岔(或临界点)的观点,该模型通过耦合随机微分方程描述每个脑区的两个状态变量的演变 —— 这两个状态变量代表了 Stuart - Landau 振荡器在笛卡尔空间中的轨迹的幅度和相位分量。Rolls 等人通过 Gilson 等人使用的整合规则将结构连接整合到模型中,并通过将每个脑区的幅度分量的滞后和零滞后协方差拟合到 fMRI 数据特征来估计参数。
最近,Crimi 等人通过修改 Gilson 等人使用的整合规则,构建了一个旨在区分单跳和多跳定向功能连接的 MVAR 模型。这个模型涉及对图 2b中的连续时间状态方程进行离散化,并在括号中引入一个额外项:第二个转移矩阵与(布尔)结构连接矩阵的补集的哈达玛积。因此,第二个转移矩阵编码了那些似乎不对应直接结构连接,但通过中间节点仍然连接的脑区的权重。通过这种方式,Crimi 等人的模型是最早尝试捕捉多跳结构连接对定向连接影响的模型之一,而不是排除或试图减少这种影响,因此与对大脑中多跳通信作用的更广泛、新兴的认识相一致。他们的模型在默认模式网络静息态活动的模拟中与DCM 相比表现良好,并且在应用于 fMRI 数据时能够检测出自闭症个体的病例 - 对照差异。此外,与之前所有将 MVAR 型模型应用于 fMRI 数据的研究不同,在拟合模型之前,他们使用了一种盲反卷积方法来估计 BOLD 信号背后的(群体)神经元活动,以过滤时间序列数据。
尽管在应用这种盲反卷积方法时继承了许多假设,例如 BOLD 时间序列数据中神经元事件的检测标准(无法区分噪声和神经元事件),但将MVAR 模型拟合到解卷积后的 BOLD 信号可以被概念化为有效连接的分段近似,在某种程度上与回归 DCM 类似(回归 DCM 与MVAR 型模型类似,假设大脑区域的条件独立性)。虽然在数据拟合之前应用这种反卷积方法可能是有利的(与使用原始BOLD 时间序列数据相比),但应该强调的是,它们并没有受到约束,使得估计的神经元活动在生物学上是合理的(与光谱 DCM 相比,光谱 DCM 有助于从BOLD 时间序列数据的互谱密度推断内源性神经元活动的幂律形式,见参考文献 86、87)。话虽如此,根据目标,如果有足够的时间序列数据或使用高维模型,原始 BOLD 信号可能足以捕捉基本的大脑动态。例如,如果目标是最大化预测准确性,那么接下来讨论的能够处理大量未标记神经成像数据集的基于 ML 的方法就变得相关了。
3.2.3 基于机器学习的方法
最近,文献中提出了几种基于数据驱动的、将结构连接整合到定向功能连接中的 ML 方法。尽管贝叶斯网络经常用于对变量之间(基于结构信息的)概率依赖关系进行建模,但这类模型忽略了时间动态,因此不在本综述的关注范围内。也就是说,动态贝叶斯网络(DBNs)可以通过对不同时间步变量之间的依赖关系进行建模来考虑时间动态。DBNs 的优化涉及对网络结构(节点(变量)如何通过有向边连接)及其参数(网络中每个变量在给定直接影响它的变量集的条件下的条件概率分布)的无监督学习。这种无监督学习必然需要使用一个函数对可能的网络进行评分,并使用一种算法在可能的网络模型空间中进行搜索(图 2c)。
在 Dang 等人的一项研究中,作者提出了一种使用基于结构信息的评分对可能的网络进行评分的新方法。本质上,这个分数是通过将给定 DBN 的模型证据(基于 fMRI 时间序列数据)与从(概率)纤维束成像获得的结构连接权重相结合而得出的。在计算机模拟分析中,与无结构信息的搜索相比,使用这种基于结构信息的评分与马尔可夫链蒙特卡罗搜索过程相结合,提高了学习到的网络结构的准确性。此外,当应用于真实的静息态 fMRI 和纤维束成像数据时,基于结构信息的 DBN 在区分青少年和老年人方面实现了最高的分类性能,优于无结构信息的 DBN 和 MVAR 模型。
值得注意的是,Dang 等人的研究以及其他一些研究中使用的结构连接权重,是基于从基于感兴趣区域的纤维束成像得出的平均流线计数(没有进行旨在提高生物学可解释性的校正)。由于许多因素会调节神经束相关通路之间和内部的纤维束成像流线计数(如与长度相关的追踪偏差和交叉纤维),这代表了一个特定的方法学决策,没有太多可取之处。因此,尽管我们已经提出基于 ML 的方法在处理 BOLD 信号时可能对噪声数据具有鲁棒性,但对于这些具有可疑生物学可解释性的高度衍生的纤维束成像数据,有理由认为它们可能会降低模型性能和可靠性。
可解释性是这项工作提出的另一个问题。新的基于 ML 且提高可解释性的方法不仅能够适应随时间变化的时空图结构数据,还能够模拟对大脑结构的消融或对其功能的扰动,并探索这两种干预对定向功能连接预测的影响。例如,在 Wein 等人最近的一项研究中,作者使用扩散卷积递归神经网络(DCRNN)来学习结合了结构连接和功能动态的图结构时空信号分布。在这种 DCRNN 方法的背景下,在学习了输入和预测输出序列之间的映射函数后,可以去除特定区域的功能动态信息,并将新的输入序列(在输入空间中进行人工扰动)映射到新的预测输出序列。然后,原则上可以将 DCRNN 在有和没有扰动情况下的预测差异视为一种定向功能连接度量。尽管这种方法很强大,但随着自动方法的数量不断增加,这种扰动分析在计算上可能会很密集。此外,与 DBNs 以及之前讨论的所有有效连接和定向功能连接方法不同,在没有基于扰动或基于替代模型的分析(在这种分析中,使用更简单、可解释的模型来近似图神经网络的输出)的情况下,DCRNNs 不能直接生成一个清晰描述定向连接的有向图。
在本节中,我们回顾了将结构连接和定向连接整合的三种方法 — 贝叶斯方法、嵌入方法和基于 ML 的方法。贝叶斯方法通过概率术语构建结构连接和定向连接之间的关系,在揭示特定机制方面能力有限。相比之下,嵌入方法通过将结构连接作为固定参数整合到状态空间模型中来指定机制,但往往忽略多跳定向连接。最后,尽管基于 ML 的方法能够预测复杂的动态,但缺乏内在的可解释性。下一节将讨论这些挑战以及其他挑战,我们将在其中概述未来的研究方向,并强调需要跨学科合作来填补该领域的空白。
4. 未来研究策略
在本节的最后,我们探索推进基于结构信息的大脑定向连接模型的策略。我们首先讨论与验证贝叶斯方法相关的挑战,接着讨论提高生物学可解释性的方法创新。然后,我们研究如何改进基于 ML 的预测,并探索体内扰动分析的转化潜力。总之,所讨论的建议策略旨在弥合当前研究的差距,为未来的研究开辟新途径,特别是在神经精神疾病的个性化干预方面。
4.1 验证和扩展贝叶斯方法
使用模拟来确立包含基于结构先验的模型的表面效度,这通常被认为是证明模型适用性的关键步骤,但这是一项艰巨的挑战。这是因为,虽然人们可以手工编码一个转移矩阵,从而模拟神经元群体之间的真实相互作用,但却无法以同样的方式手工编码一个真实的先验,或者更抽象地说,一个真实的基于结构信息的先验方差。因此,确定特定网络的基于结构的先验的稳健性需要在不同的实验阶段、不同的样本(甚至可能跨物种)中应用它们。尽管在最近尚未经过同行评审的工作中,Greaves 等人在一个分层模型中确立了这种贝叶斯方法的可靠性和样本外有效性,但该分析仅考虑了通过频谱 DCM 推断的静息态有效连接,可能无法推广到我们详细讨论过的其他有效连接模型。
回到如何解释 “结构连接是定向连接的正则化因子” 这一结论的问题(见 “贝叶斯方法”):挑战在于基于结构的先验代表了一种统计假设,而非映射到生物学机制的过程。然而,我们注意到,使用基于结构连接的约束来正则化定向连接模型的科学家,与两种统一的理论观点之间存在有趣的相似之处:预测编码框架,该框架假定大脑自身执行一种分层的贝叶斯更新;以及自由能原理,该原理表明大脑的结构约束神经调节过程,以最小化长期熵。与这些理论观点的契合既有好处,也有缺点。
与这些理论观点的契合提出了三个具有启发性的研究问题。第一,鉴于有证据表明感觉皮层的较高层级基于较低层级的反馈进行误差校正计算(一种在线正则化),并且这种计算在皮层层级结构的每个层级都有实施,人们可能会问:最能正则化定向连接模型的基于结构连接的约束是否表现出层级组织(图 3a)。鉴于长期以来人们对病例 - 对照在错误推断或对世界内部模型(用于推断感觉输入的原因)的过度拟合(过度正则化)方面的差异感兴趣,人们可能会问:结构连接对定向连接模型的最佳正则化程度与个体在内部模型正则化方面的差异证据之间是否存在关系(图 3b)。第三,鉴于有证据表明大脑功能的层级组织在特定疾病或干预下会发生改变,在各种神经精神疾病(如多发性硬化症)中功能连接趋向于与结构连接重合,而迷幻药会导致功能连接与结构连接解耦,人们可能会问:结构连接对定向连接模型的最佳正则化程度与个体在这些特定疾病或干预下的改变差异之间是否存在关系?
尽管这还是一个新兴的研究领域,但应用具有基于结构先验的定向连接模型已经在这些问题上取得了一些进展。与最近一项在啮齿动物中基于结构信息的 DCM 研究中报告的有效连接网络的层级组织一致,Greaves 等人表明,结构连接对有效连接的影响沿着已确立的单模态 - 跨模态皮层层级结构而变化。同样,Tanner 等人使用流行的 Louvain 算法表明,从基于结构信息的 MVAR 模型导出的全脑定向功能连接呈现出层级社区结构(图 3a)。此外,基于结构信息的定向功能连接模型已被证明在表征运动感知背后的有效连接以及检测创伤性脑损伤和重度抑郁症(MDD)的病例 - 对照差异方面是有用的;然而,在这项研究中,对基于结构先验的个体差异的分析往往有所欠缺。
4.2 提高生物学可解释性的方法创新
上述一些研究问题的初步答案有助于证明这些具有基于结构先验的定向连接模型的预测效度;然而,报告的效应暗示了众多潜在机制,最终需要更详细的模型来进行研究。也就是说,通过生物学注释或应用图论模型,能够轻松地为结构连接融入有意义的细节,这为在具有基于结构先验的定向连接模型背景下解决机制问题提供了有前景的途径。例如,最近的一项工作通过简单的分析变换,在通过基于结构的先验进行整合之前,模拟了网络信号在结构连接上的(扩散)过程(图 3c),这使得评估特定的网络信号传播模型对有效连接的约束程度成为可能。此外,Tanner等人的研究支持了生物学注释的前景,他们发现基于结构信息的定向连接的社区结构与生物学特征(如受体密度和基因表达标记)的空间模式的契合度比随机预期的更高。
图3 基于结构信息的定向连接模型的新兴方向。
各种图论模型和经过生物学注释的连接组可能值得以这种方式进行探索;然而,将更多机制细节正式整合到这些模型中的最直接方法,是将其嵌入到状态空间方程中。我们讨论的大多数模型都聚焦于结构连接和状态转换之间的关系;然而,这并非唯一的方法,也绝不是最好的方法。例如,研究表明,一个大脑区域与其他区域的结构连接数量(其结构度)能够预测极低频率神经活动的功率(这可能反映了通过众多路径传输的信号的复杂协调)。因此,在对有效连接进行建模的背景下,利用结构连接作为对不同神经元群体相关的内源性波动的约束可能会很有用。
虽然这只是一种推测,但我们在此勾勒出一个有效连接模型的框架,其中结构连接和功能动态之间的关系被嵌入到状态方程的随机部分中 —— 结构度塑造内源性波动(结构度越高,低频功率越大,反之亦然),并且可以通过反演来推断结构 - 功能耦合的强度。这样的模型与 Hopf 分岔模型(见 “嵌入方法”)有相似之处,后者试图将结构连接的存在与内在神经活动的频谱特征(如幂律特性)联系起来。然而,以其目前的形式,Hopf 分岔模型直接拟合 fMRI 数据的滞后和零滞后协方差(没有 HRF),因此无法对神经元层面的活动进行推断。
也就是说,Hopf 分岔模型和许多其他(无向)模型(所谓的动态神经模型(DNMs)),这些模型拟合静态功能连接(不在本综述的关注范围内),有着明确的生物物理目标。因此,尝试增强这些 DNMs 并将它们引入基于推断的有效连接领域是合乎逻辑的。例如,朝着这个方向迈出的有趣的第一步可以是采用 Hopf 分岔模型的完整表示(控制其动态的两个状态变量),添加标准的 HRF,并在回归 DCM 使用的平均场假设下对模型进行反演。这并非理论上的最优解决方案(因为大脑区域并非独立运作);然而,至少这些添加将使我们能够确定在计算机模拟分析的背景下,是否可以从 fMRI 数据准确推断分岔参数。
一种可能解决与纤维束成像相关问题的方法,是评估预测模型在人类和通过侵入性方法获得结构连接的动物模型中的跨物种效度。仅举一个例子,艾伦小鼠脑连接图谱提供了一个使用病毒追踪技术生成的有向全脑结构连接图。将这些数据整合到定向连接模型中,除了有助于深入了解跨物种的神经元通信的保守原则外,还可能有助于模型校准(例如确定参数的合理范围)。
4.3 利用基于机器学习的技术提高预测准确性
当然,有时手头的特定科学任务是最大化预测准确性,而不是试图推断有效机制。在这种情况下,基于 ML 的技术就显得尤为重要。然而,推断和预测的目标并非相互排斥,越来越多的文献聚焦于使用生成(或从推断中得出)的嵌入,即将有效连接的后验输入到判别分类器中。例如,在最近的一项前瞻性研究中,使用生成嵌入比基于脑容量测量或功能连接数据的嵌入更准确地预测了个体患痴呆症的发病情况。作为一种扩展,人们可以设想使用其他基于 ML 的方法,如遗传算法,来优化基于结构的先验,并改进对个体水平有效连接的推断,从而使这些嵌入受益,并进一步提高预测准确性。
4.4 进行体内扰动分析和临床干预
除了利用开源的大脑连接资源外,在人类和动物模型中进行体内扰动分析,将有助于更好地解释和验证定向连接模型所描述的因果(可控制)关系。在人类中,动态因果模型和 MVAR 模型都已应用于在经颅磁刺激(TMS)期间记录的 EEG 和 fMRI 时间序列数据;类似的扰动研究也已在啮齿动物中使用光遗传学进行。
然而,除了 Creamer 等人关于秀丽隐杆线虫的尚未经过同行评审的工作外,缺乏将基于结构信息的定向连接模型与体内扰动分析相结合的研究,这显然是未来研究的一个机会。
当以这种方式使用采用无监督 ML 技术的模型时,需要对数据质量保持批判性的态度。例如,纤维束成像虽然是研究结构连接的重要工具,但存在众所周知的局限性,目前尚不清楚这些局限性如何影响基于结构信息的定向连接模型。具体而言,通过纤维束成像重建的流线仅近似表示潜在的神经束,这可能导致假阳性(识别出在解剖学上不合理的路径)和假阴性(未能捕捉到真实的连接)等问题。
先进的估计纤维方向分布和过滤流线的方法(如约束球形反卷积和基于球形反卷积的纤维束图过滤)旨在准确捕捉单个体素内复杂的(交叉的)纤维方向,并根据局部扩散信号对流线进行加权,从而改进这些表示。
此外,这一特定的研究方向是将基于结构信息的定向连接模型转化为临床应用的最明确途径之一。例如,重复经颅磁刺激目前用于扰动大脑动态,以治疗重度抑郁症和强迫症(并且正在探索用于其他病症),其理论依据是神经精神疾病由病理性神经动态吸引子状态维持。在这一领域的文献中,基于 TMS 相关功能连接模式预测重度抑郁症的治疗结果,为实现更个性化的治疗铺平了道路。然而,在其他神经精神疾病的研究中,由功能连接引导的 TMS 方法却产生了适得其反的结果。例如,受在创伤后应激障碍(PTSD)中观察到的内侧前额叶皮层和杏仁核之间的 BOLD 活动反相关的启发,最近一项大型临床试验对接受暴露疗法的 PTSD 患者的内侧前额叶皮层进行了重复 TMS 刺激。最终,与神经正常的参与者相比,TMS 干预导致 PTSD 患者的治疗效果更差,这可能是因为该干预无意中强化了适应不良的大脑动态,而非破坏它们。我们认为,这种负面或其他不明确的效应部分可能是由于干预由简单的相关模型引导,未能捕捉到定向连接。如果在一个简单的回路中,没有关于一个大脑区域对另一个区域的定向影响的信息,就很难确定回路中大脑动态是否存在重要的病例 - 对照差异,以及确定干预需要对回路施加何种影响。最终,这种关于定向影响的信息必须从模型中获得,在临床试验环境中,我们建议使用最具原则性(基于时间先后顺序)和生物学基础(基于结构信息)的模型至关重要。
5. 结论
在这篇综述中,我们探讨了整合结构连接和定向连接所涉及的进展与挑战,重点关注了关键的方法学差异和共性。我们强调的一个核心二分法是有效连接模型和定向功能连接模型之间的区别:前者旨在推断观测数据背后的机制,而后者侧重于基于过去的观测预测未来数据。我们确定了将结构连接整合到定向连接模型中的三种常见方法 —— 贝叶斯方法、嵌入方法和基于 ML 的方法,并讨论了每种方法所带来的优势和局限性。为了克服某些局限性,我们提出了利用多种模型互补优势的策略,认识到表征定向连接本质上需要整合和借鉴过去的理论和计算进展。
我们无法对未来研究策略讨论中提出的每个问题进行全面而详细的阐述,因为每个问题本身都可以构成一篇综述。然而,我们旨在就理解结构连接对大脑定向连接动态的约束这一追求中所面临的科学挑战和机遇,提供一个前瞻性的视角。从最高层面来看,这一追求的目标可以被视为推导出一个在单一框架中统一大脑结构、功能动态和认知的模型。退而求其次,利用基于结构信息的定向连接模型为神经精神疾病的个性化干预(如 TMS)服务的目标似乎是可以实现的。我们希望在这篇综述中,我们提供了所需的方法学概述,以促进不同领域的研究人员为实现上述任何一个目标而进行的协调努力。
参考文献:Structurally informed models of directed brain connectivity.