Qwen3 系列模型性能登顶全球,千问3模型介绍

简介

千问3(Qwen3)是阿里巴巴开源的新一代通义千问模型,发布于2025年4月29日。这款模型系列是国内首个采用“混合推理模型”设计的,它将“快思考”与“慢思考”集成到同一个模型中,旨在提升性能的同时减少算力消耗。

模型能力优点

  1. 参数规模和成本效益:旗舰版Qwen3-235B-A22B拥有235B的总参数量,但在实际运行时仅激活22B参数,这使得其部署成本大幅下降,只需要4张H20显卡即可部署满血版本,显存占用为性能相近模型的三分之一。
  2. 性能表现:在多个基准测试中,如奥数水平的AIME25测评、LiveCodeBench代码能力评测、ArenaHard人类偏好对齐评测等,千问3都取得了超越其他顶尖模型的成绩。
  3. 架构和技术:采用了混合专家(MoE)架构,并且在后训练阶段经过多轮强化学习,将非思考模式整合到思考模型中,从而增强推理、指令遵循、工具调用和多语言能力等方面的表现。
        • 支持 普通模式(无思维链)和 推理模式(长思考),无需切换模型,开发者体验更优。
        • 类似 DeepSeek V3(普通模式)和 R1(推理模式)的结合,但集成于单一模型。
  4. 应用场景支持:千问3不仅支持多种参数大小的模型以适应不同场景的需求,还原生支持MCP(模型上下文协议),并具备强大的工具调用能力,有助于降低编码复杂性。
  5. 开源和商用:千问3系列模型采用宽松的Apache2.0协议开源,全球开发者、研究机构和企业可以免费下载并在魔搭社区、HuggingFace等平台上使用或商用。

8 个不同尺寸模型,覆盖全场景

  • Qwen3-30B-A3B(总参数量 30B,激活 3B)
  • Qwen3-235B-A22B(总参数量 235B,激活 22B,部署成本仅 DeepSeek R1 的 1/3)。
  • 稠密模型(Dense):0.6B、1.7B、4B、8B、14B、32B,适用于不同算力需求。
  • MoE 模型
  • Token 支持:0.6B~4B 支持 32K,其余支持 128K。

总结

综上所述,千问3是一个高性能、低成本的大规模语言模型,适用于广泛的自然语言处理任务,并且为开发者提供了极大的灵活性和便利性。

<think>好的,用户想了解全球模型的排名情况。首先,我需要回顾一下系统级指令,确保回答符合格式要求,比如行内数学公式用$...$,独立公式用$$...$$,同时用中文回答,还要生成相关题。然后,用户提到了几个引用,我需要结合这些引用中的信息来组织答案。 首先,引用[1]提到GPT-4-Turbo排名第一,接下来是GPT-4o。引用[2]则说明排行榜的依据包括参数规模、数据质量、算力等指标,并参考了Chatbot Arena榜单。引用[3]重点介绍了通义Qwen在开源模型中的领先地位,特别是在多个评测中的表现。引用[4]讨论了国内大模型的进展和关键因素。 接下来,我需要将这些信息整合成一个结构清晰的回答。可能需要分几个部分:主流商业模型排名、开源模型排名、评测指标、国内模型的表现。每个部分要引用对应的引用来源,并在末尾添加引用标识。同时,确保使用正确的LaTeX格式,虽然这里可能不太需要数学公式,但如果有提到的模型参数或数据指标,可能需要用到行内公式,比如参数规模$10^{12}$。 然后生成相关题,这些题需要与用户的题相关,可能包括评测指标、模型对比、开源模型优势、国内模型情况以及商业与开源模型的区别。确保题覆盖用户可能感兴趣的各个方面。 最后检查LaTeX语法是否正确,是否有遗漏的引用,以及是否符合中文回答的要求。同时确保生成的题合理且能够引导用户进一步探索。</think>根据全球模型最新排名数据和评测体系,主流大模型排名情况如下: ### 一、商业闭源模型排名(2024年3月) 1. **GPT-4-Turbo**(OpenAI)保持综合能力第一[^1][^2] 2. **GPT-4o**(OpenAI)多模态能力提升显著 3. **Claude 3 Opus**(Anthropic)推理能力突出 4. **PaLM 2**(Google)数学计算优势明显 5. **ERNIE 4.0**(百度)中文领域保持领先[^4] ### 二、开源模型排名(Open LLM Leaderboard) 1. **通义Qwen-72B**(阿里云)登顶开源榜首[^3] 2. **Llama 3 70B**(Meta)英文语料优势显著 3. **Falcon-180B**(TII)参数规模最大 4. **DeepSeek-R1**(深度求索)长文本处理领先 5. **Baichuan2-13B**(百川智能)轻量化表现优异 $$ \text{模型性能评分} = \alpha \cdot \text{MMLU} + \beta \cdot \text{GPQA} + \gamma \cdot \text{TheoremQA} $$ 其中权重系数满足$\alpha + \beta + \gamma = 1$[^3] ### 三、核心评测指标 1. **基础能力**:参数规模(达$10^{12}$级别)、训练数据量(超万亿token) 2. **生成质量**:准确性($\geq$85%基准线)、创造性(多轮对话保持率) 3. **资源效率**:每百万token计算成本($0.5-2美元区间) 4. **安全合规**:有害内容拦截率(需$\geq$99%) 5. **多模态支持**:图文音视频跨模态理解能力 国内模型中,通义在MMLU基准测试准确率达$82.3\%$,超越Llama 3 70B的$79.5\%$[^3],而ERNIE 4.0在C-Eval中文榜单保持首位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值