目标检测中的Feature Alignment问题

最近面试中遇到了这个问题,自己答得不好。因此又重新调研了这一块内容并做个记录,可能理解不全面,欢迎各位批评指正。

目标检测中的Feature Alignment问题主要分为:

1.分类与回归特征不匹配问题,即分类与回归部分所需要的特征不同,当前使用共享全连接层或者卷积层的操作会带来特征冲突问题。

2.Anchor与特征不对齐问题,主要包含两个:
1)feature map上的同一个点同时对应了大小不同的多个anchor,这里存在一个对齐的问题,可以使用FPN结构缓解;

2)回归后的Anchor相对于原始位置已经发生了较大变化,但是分类和回归仍然使用原始位置特征进行预测,这也是特征对不齐的问题。

一、Two-Stage算法:

在这里插入图片描述
两阶段算法主要包含:第一阶段是特征提取和proposal生成,主要是RPN网络;第二阶段是对候选框进行进一步筛选、精修和细分类,主要是ROI Pooling/Align等网络。

针对问题1分类与回归特征不匹配问题,解决方案有:

论文:Double-Head RCNN: Rethinking Classification and Localization for Object Detection:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值