最近面试中遇到了这个问题,自己答得不好。因此又重新调研了这一块内容并做个记录,可能理解不全面,欢迎各位批评指正。
目标检测中的Feature Alignment问题主要分为:
1.分类与回归特征不匹配问题,即分类与回归部分所需要的特征不同,当前使用共享全连接层或者卷积层的操作会带来特征冲突问题。
2.Anchor与特征不对齐问题,主要包含两个:
1)feature map上的同一个点同时对应了大小不同的多个anchor,这里存在一个对齐的问题,可以使用FPN结构缓解;
2)回归后的Anchor相对于原始位置已经发生了较大变化,但是分类和回归仍然使用原始位置特征进行预测,这也是特征对不齐的问题。
一、Two-Stage算法:
两阶段算法主要包含:第一阶段是特征提取和proposal生成,主要是RPN网络;第二阶段是对候选框进行进一步筛选、精修和细分类,主要是ROI Pooling/Align等网络。
针对问题1分类与回归特征不匹配问题,解决方案有:
论文:Double-Head RCNN: Rethinking Classification and Localization for Object Detection: