EKF的误差传播

非线性函数的线性化近似

  对于一个状态量 X ∈ R n X\in \mathbb{R}^n XRn,t时刻的状态表示为 X t X_t Xt,t+1时刻的状态表示为 X t + 1 X_{t+1} Xt+1。前后两个时刻的状态可以用一个非线性的运动学函数表示 f ( ⋅ ) f(·) f()
X t + 1 = f ( X t + n t ) X_{t+1}=f(X_t+n_t) Xt+1=f(Xt+nt)
其中 n t ∼ N ( 0 , R ) n_t\sim \mathcal{N}(0,R) ntN(0,R)是噪声项。注意,通常情况下,函数包含了旋转和平移等操作,因此是非线性的。在非线性的情况下,如果我们知道了 X t X_t Xt的概率分布,想要推导 X t + 1 X_{t+1} Xt+1的概率分布往往是很困难的,因此我们需要对该函数进行一些必要的近似使推导 X t + 1 X_{t+1} Xt+1分布的过程变得简单一些。这个近似就是取 f ( ⋅ ) f(·) f()的一阶近似:
X t + 1 ≈ f ( X o p t ) + F t δ X t + G t n t X_{t+1}\approx f(X_{opt})+F_t\delta X_t+G_tn_t Xt+1f(Xopt)+FtδXt+Gtnt
F t = ∂ f ( X o p t + n t ) ∂ X o p t F_t=\frac{\partial f(X_{opt}+n_t)}{\partial X_{opt}} Ft=Xoptf(Xopt+nt)
G t = ∂ f ( X o p t + n t ) ∂ n t G_t=\frac{\partial f(X_{opt}+n_t)}{\partial n_t} Gt=ntf(Xopt+nt)
其中线性展开的点我们成为工作点,这个工作点的选择影响到了线性化近似的好坏,即展开点附近如果函数的形状接近于线性的话,则近似的效果较好,如果很弯曲的话则近似的效果则很差。以上就是非线性函数进行线性化近似的基本思路。

误差项的传播

实际情况下,我们的估计中总是带有一定的误差,即上式的中的 X = X ^ + δ X X=\hat{X}+\delta X X=X^+δX X ^ \hat{X} X^为当前估计量。因此上式我们可以写为:
X ˇ t + 1 = f ( X ^ t + δ X t + n t ) \check{X}_{t+1}=f(\hat{X}_t+\delta X_t+n_t) Xˇt+1=f(X^t+δXt+nt)
X ˇ t + 1 \check{X}_{t+1} Xˇt+1表示一步状态传递得到的 X t + 1 X_{t+1} Xt+1的状态预测(之后还会用测量值进行修正得到最终的 X ^ t + 1 \hat{X}_{t+1} X^t+1
EKF往往选择将 X ^ \hat{X} X^做为上述提到的线性化近似的展开点。(当然你也可以选择别的点作为展开点,如IEKF就通过多次迭代,每一次的展开点都不一样)
X ˇ t + 1 ≈ f ( X ^ t ) + F t δ X t + G t n t \check{X}_{t+1}\approx f(\hat{X}_t)+F_t\delta X_t+G_tn_t Xˇt+1f(X^t)+FtδXt+Gtnt
X ˇ t + 1 − f ( X ^ t ) = F t δ X t + G t n t \check{X}_{t+1}- f(\hat{X}_t)=F_t\delta X_t+G_tn_t Xˇt+1f(X^t)=FtδXt+Gtnt
δ X t + 1 = F t δ X t + G t n t \delta X_{t+1}=F_t\delta X_t+G_tn_t δXt+1=FtδXt+Gtnt
Σ t + 1 = E [ δ X t + 1 δ X t + 1 T ] = E [ ( F t δ X t + G t n t ) ( F t δ X t + G t n t ) T ] = F t Σ t F t T + G t R G t T \Sigma_{t+1}=E[\delta X_{t+1}\delta X_{t+1}^T]=E[(F_t\delta X_t+G_tn_t)(F_t\delta X_t+G_tn_t)^T]=F_t\Sigma_tF_t^T+G_tRG_t^T Σt+1=E[δXt+1δXt+1T]=E[(FtδXt+Gtnt)(FtδXt+Gtnt)T]=FtΣtFtT+GtRGtT
Σ t + 1 \Sigma_{t+1} Σt+1为t+1时刻的协方差矩阵, Σ t + 1 \Sigma_{t+1} Σt+1为t时刻的协方差矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值