基于EV/EBITDA的量化策略(基于python,附代码)

一、估值方法概括

估值方法共分为两类:绝对估值法和相对估值法。

绝对估值法以“资产的价值是未来收入的折现”为基准,将未来现金流按照一定贴现率贴现到当前时间点得到资产的价值;这种估值方法有一个难点:如何合理预测公司未来收入?

相对估值法通常利用各种比率进行估值,这种方法常见的用法是:预估整个行业或相似企业各比率的合理水平,当目标公司超过该合理水平时,则为高估或低估。

常用的绝对估值法主要包括:股利贴现模型、自由现金流贴现模型等。常用的相对估值法主要包括:市盈率估值法、市净率估值法、市销率估值法、PEG估值法、企业价值倍数法(EV/EBITDA)等。

二、PE与EV/EBITDA对比

市盈率以其方便的特点成为不少投资者进行估值时首要选择的指标。市盈率和EV/EBITDA之间有什么区别呢?

1.P/E市盈率

市盈率分为动态市盈率和静态市盈率。静态市盈率是用上一个报告期的每股收益作为分母计算得到,动态市盈率是用当期或以后的每股收益预测值计算得到。在行情软件中,多用动态市盈率。

市盈率的含义可以理解为股价收益比率。假设一个股票股价为100,每股收益为10,这时该只股票的市盈率为10。假设在理想情况下,意味着只需要10年该股票就能挣到100,即能回本。因此,常被视为一种估值手段。

市盈率的使用这么简单吗?显然不是。许多公司为了让数据好看,会做多收益,加入一次性利润。比如上一个例子,每股收益的10中只有8是正常经营活动得到的,剩余的2是由于本期一次性收益得到的,但计算市盈率时,这部分仍然被算在里面,这就会导致市盈率偏低。

2.EV/EBITDA

含义:EV/EBITDA又称企业价值倍数,公式为EV/EBITDA。

EV:公司价值,EV=市值+总负债-总现金

EBITDA: 息、税、折旧、摊销前盈余,EBITDA = 营业利润 + 折旧费用 + 摊销费用

和PE相比,从分子来看,EV/EBITDA用企业价值代替股票市值,既考虑了股东的情况,也考虑了债权人的情况,弥补了PE指标只考虑股东没有考虑债权人的不足。从分母来看,EV/EBITDA的分母用息、税、折旧、摊销前盈余代替了每股净收益,不包含财务费用,不受企业资本结构的影响;剔除了折旧和摊销,不受折旧政策的影响。另外,EBITDA不包含投资收益、营业外收入等其他收益项目,使得企业间的比较更加纯粹。

与PE相比,EVEBITDA还有一些缺陷。EBITDA没有考虑到税收因素,如果税收差异大,指标的估值就会失真。

三、基于EV/EBITDA的套利策略

策略思路:以过去20个周期的EV/EBITDA数据为基准,计算均值和方差。设定EV/EBITDA的上下界分别为:均值±标准差。当EV/EBITDA超过上界时,说明当前股价被高估,需平仓。当EV/EBITDA低于下界时,说明当前股价被低估,买入1000股。

回测期:2015.11.01至2020.11.10
回测期初始资金:1000万
回测手续费:0.01%
回测滑点:0.01%

回测结果如下:
在这里插入图片描述

回测期累计收益为60.45%,年化收益率为12.02%,最大回撤为11.29%,胜率为96%。

四、 策略代码

注:此策略基于掘金量化平台,数据来自掘金量化平台。网址为:掘金量化平台

# coding=utf-8
from __future__ import print_function, absolute_import
<think>好的,用户的问题是关于选股公式、股票筛选、计算方法和量化交易的。首先,我需要明确用户的需求,可能是想了解如何构建有效的选股模型,或者学习量化交易中的股票筛选方法。用户可能是投资者或者对量化交易感兴趣的人,希望找到实用的选股策略。 接下来,我应该考虑选股公式的常见类型,比如基本面分析和技术指标。基本面分析通常涉及财务数据,如市盈率、市净率、ROE等,而技术指标可能包括移动平均线、RSI、MACD等。用户可能需要具体的公式和如何应用这些指标的例子。 然后,量化交易中的计算方法,可能需要提到多因子模型和风险平价模型。这部分需要解释每个模型的原理,并提供数学公式,比如多因子模型中的综合评分公式,以及风险平价模型中的权重分配公式。同时,代码示例会帮助用户实际应用这些模型,比如用Python计算指标。 用户可能还需要知道如何回测和优化选股策略,这部分需要说明回测的步骤,包括历史数据测试、参数优化和风险指标的计算,如夏普比率。此外,数据处理的重要性也不能忽视,包括数据清洗和特征工程的方法。 需要确保回答结构清晰,分点说明不同的方法和步骤,每个部分之间有换行。同时,避免使用第一人称和步骤词汇,按照要求组织内容。代码和公式的格式要正确,行内公式用$符号,独立公式用$$,代码块用三个反引号并注明语言类型。 最后,生成相关问题时要基于用户的问题和回答内容,可能涉及具体指标的应用、量化平台的推荐、回测常见错误、处理数据异常的方法等。确保问题相关且有实际意义,帮助用户进一步探索主题。</think>针对选股公式和量化交易中的股票筛选,可通过以下方法实现高效策略构建: **基本面筛选公式** 常用财务指标组合公式为: $$Score = 0.3*\frac{PE_{industry}}{PE} + 0.4*\frac{ROE}{ROE_{industry}} + 0.3*\frac{RevenueGrowth}{RevenueGrowth_{industry}}$$ 其中$PE$为市盈率,$ROE$为净资产收益率。该公式通过行业相对值评估股票价值,权重系数可根据策略调整。 **技术指标组合** 典型双指标筛选方案: ```python # 布林带与RSI组合策略 def technical_screen(df): df['MA20'] = df['Close'].rolling(20).mean() df['Upper'] = df['MA20'] + 2*df['Close'].rolling(20).std() df['Lower'] = df['MA20'] - 2*df['Close'].rolling(20).std() df['RSI'] = ta.momentum.RSIIndicator(df['Close'], window=14).rsi() return df[(df['Close'] < df['Lower']) & (df['RSI'] < 30)] ``` **多因子量化模型** 建立因子库包含: - 价值因子:$EV/EBITDA$ - 质量因子:$ROIC-WACC$ - 动量因子:$Price_{t}/Price_{t-63}-1$ 通过多元线性回归确定因子权重: $$Return = \alpha + \beta_1F_1 + \beta_2F_2 + ... + \beta_nF_n + \epsilon$$ **风险控制模块** 头寸分配采用风险平价模型: $$w_i = \frac{1/\sigma_i}{\sum_{j=1}^n 1/\sigma_j}$$ 其中$\sigma_i$表示资产i的历史波动率。配合止损机制设置动态阈值: $StopLoss = EntryPrice * (1 - MaxDrawdown/\sqrt{PositionDays})$ **策略回测框架** 关键验证指标包括: - 年化收益率 > 20% - 夏普比率 ≥ 1.5 - 最大回撤 < 25% - 胜率 > 55% 可通过walk-forward优化防止过拟合,设置参数敏感度测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值