YOLOv4中常见CV学术名词说明(三){CSP/WRC/SAT}

本文详细介绍了三种深度学习中的关键技术:CSP(Cross-Stage-Partial-connections)增强了模型的特征复用;WRC(WeightedResidualConnections)通过加权残差连接改进了信息流动;而SAT(Self-adversarial-training)是一种新颖的数据增强方法,通过神经网络自身执行对抗性攻击来提高模型的鲁棒性。这些技术对于提升模型的性能和泛化能力具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【17】CSP(Cross-Stage-Partial-connections)

在这里插入图片描述

ref:https://www.cnblogs.com/yunshangyue71/p/13439853.html

【18】WRC (Weighted Residual Connections)

在这里插入图片描述

ref :https://www.cnblogs.com/yunshangyue71/p/13437688.html

【19】SAT(Self-adversarial-training)

  • 使用方法:

在这里插入图片描述

  • 说明
    在这里插入图片描述
    自对抗训练(SAT)也代表了一种新的数据增强技术,它在两个前向后向阶段运行。在第一阶段,神经网络改变原始图像而不是网络权值。通过这种方式,神经网络对其自身执行对抗性攻击,改变原始图像,以制造图像上没有所需对象的欺骗。在第二阶段,训练神经网络,以正常的方式在修改后的图像上检测目标

-Reference:
参见官方issue:
https://github.com/AlexeyAB/darknet/issues/5117
相关论文解读:
https://zhuanlan.zhihu.com/p/136202391

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI扩展坞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值