一、机器学习基本概念二、比较检验–方差–偏差三、线性模型 梯度下降简单介绍四、决策树五、神经网络 神经网络理解:前向传播与反向传播 神经网络之CNN 神经网络之RNN 门控循环单元六、支持向量机七、贝叶斯分类器八、集成学习 XGBoost LightGBM九、聚类十、降维与度量学习 kNN补充——近邻的距离度量十一、特征选择与稀疏学习十二、计算学习十三、半监督学习十四、概率图模型十五、规则学习