DIP 数字图像处理3:形态学综合题(粒子测度实现)

本文介绍了如何通过数字图像处理技术计算粒子大小分布并绘制分布图。实验涉及图像的灰度化、高斯去噪、二值化、开运算等步骤,使用OpenCV库进行实现。通过对不同结构元大小下开运算结果的差异分析,确定粒子尺寸。实验结果显示,图像中包含多种尺寸的粒子,提供了尺寸分布的直观理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


DIP 数字图像处理3:形态学综合题(粒子测度实现)

1. 题目:计算粒子大小分布,并画出分布图

提示:
1)选择合适的开运算结构元大小及增量步长,结构元取元素全为1的正方形结构元
2)原始图像与图像开运算后相减后,还要做灰度阈值处理,只考虑哪些灰度差足够大的区域
3)分布频率对应于灰度显著变化的区域的面积除以结构元大小(33,55,…)
提示:

  • 可用自动或手动方法排除背景干扰(即去掉自动评测的区域)!
  • 某一尺度下的WTH将保留比该尺度小的所有亮细节,要想得到单一尺度的亮细节,应该把比它小的细节都减去。比如WTH(n)- WTH(n-2)保留的就是尺度介于n到n-2的亮细节 (比如尺度n是(2n+1)*(2n+1)的结构元!)

2. 实验环境:

win10 + Python3.7 + OpenCV4.1

3. 实验步骤:

3.1 将原始图片转成灰度图,高斯去燥;
3.2 设置阈值二值化图像;
3.3 不断增加开运算中正方形结构元的大小,记录相邻两次的差值;
3.4 用面积的变化除以结构元的宽度,反应原图中粒子的尺寸;

4. 实验中使用到的图像处理操作:

4.1 彩色转灰度图
4.2 高斯模糊
4.3 阈值分割
4.4 开运算

5. 实验结果:

5.1 习题图片对应的粒子测度结果如下:
在这里插入图片描述
上图对应的粒子测度如下:
在这里插入图片描述
5.2 实验过程中,为了便于调试程序,自己绘制了更加简单的图片用于测试。测试图片和结果如下:
在这里插入图片描述
上图对应的粒子测度如下:
在这里插入图片描述
5.3. 实验结果说明:
图中的条状图越高,代表原始图片中,当前尺寸的圆越多。
图像中极大值的数目表示图片中圆的尺寸分布情况。
分析可知,第一张图片中主要存在三种尺寸的圆,小圆很多,中等圆较少,最大的“圆”(纸片)最少。

6. 所有代码如下:

#! -*- coding: utf-8 -*-
# py37
# 时间:2019年4月30日09:56:17
# DIP:形态学操作处理应用(粒子测度)
# 粒子测度是一种对图像中粒子的尺度分布进行测量的操作
# 原理:开操作对输入图像中与结构元尺度相似的粒子的亮区域影响最大

import cv2
import matplotlib.pyplot 
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值