DTW学习(dynamic time warping)——思想、代码实现

本文探讨了欧式距离与DTW(动态时间规整)在处理时间序列数据时的差异,重点介绍了DTW的特点,其思想步骤,并通过代码实例展示了如何在语音识别中应用DTW计算最小距离。DTW适用于伸缩性时间轴,尤其在语音序列匹配中广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考文章:
https://zhuanlan.zhihu.com/p/117634492

1 欧式距离与DTW的比较

DTW更加适合在时间轴上有伸缩的情况,在语音序列匹配中使用广泛。

  • 欧式距离:是一种常用的 “ 点距离 ” 的度量方法。计算的是同一时刻上点的距离之和。
  • DTW距离:允许时间点的 “扭曲” ,而且,可以存在一个点对应多个点和多个点对应一个点的情况。也就是说,每个点都尽可能地找离它最近、距离最小的带你,允许时间轴上的压缩。

在这里插入图片描述

2 DTW 的思想

在这里插入图片描述

  • 注意一下,二维数组 m×n 里面存放的值,比如说是 [i, j] 应该是序列a中第i个值和序列b中第j个值的距离
  • 这个距离的度量有很多,可以是欧式距离,可以是下面文字中说明的平方差,总之要根据应用背景来确定。
    在这里插入图片描述

2.1 DTW的特点

在这里插入图片描述

2.2 DTW 的思想步骤

假设:
(1)有序列a长度为m
(2)有序列b长度为n
(3)m×n 的矩阵 叫做d[ ][ ]
(4)这里定义两个点之间的距离,就是差的绝对值,叫做fun()

  1. 计算d[0][0] = fun(a[0], b[0])

  2. 计算第0行
    d[i][0] = fun(a[i],b[0])

  3. 计算第0列
    dp[0][j] = fun(a[0],b[j])

  4. 计算剩余的值:选择{左边、上边、左上角}三个值中最小的值 + fun (a[i], b[j] )
    d[i][j] = min(d[i-1][j-1],d[i-1][j],dd[i][j-1]) + fun(a[i],b[j])

3 举例说明

在这里插入图片描述
在这里插入图片描述

4 代码

# 计算序列组成单元之间的距离,可以是欧氏距离,也可以是任何其他定义的距离,这里使用绝对值
def distance(w1,w2):
    d = abs(w2 - w1)
    return d

# DTW计算序列s1,s2的最小距离
def DTW(s1,s2):
    m = len(s1)
    n = len(s2)

    # 构建二位dp矩阵,存储对应每个子问题的最小距离
    dp = [[0]*n for _ in range(m)] 

    # 起始条件,计算单个字符与一个序列的距离
    for i in range(m):
        dp[i][0] = distance(s1[i],s2[0])
    for j in range(n):
        dp[0][j] = distance(s1[0],s2[j])
    
    # 利用递推公式,计算每个子问题的最小距离,矩阵最右下角的元素即位最终两个序列的最小值
    for i in range(1,m):
        for j in range(1,n):
            dp[i][j] = min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1]) + distance(s1[i],s2[j])
    
    return dp[-1][-1]

s1 = [1,3,2,4,2]
s2 = [0,3,4,2,2]

print('DTW distance: ',DTW(s1,s2))   # 输出 DTW distance:  2
在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。 这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。 还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应 ,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。 接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i] [j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i] [j];最后得到的output[5][5]就是我们所需要的DTW距离.
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值