强化学习(二)——Dueling Network(DQN改进)

与DNQ相比,使用优势函数(A函数)和状态价值函数(V)代替之前的Q(动作价值)函数,
最核心公式为 Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) − max ⁡ a A ∗ ( s , a ) Q^*(s,a)=A^*(s,a)+V^*(s)-\max_a A^*(s,a) Q(s,a)=A(s,a)+V(s)maxaA(s,a)

核心公式演变:
基本公式 A ∗ ( s , a ) = Q ∗ ( s , a ) − V ∗ ( s ) A^*(s,a)=Q^*(s,a)-V^*(s) A(s,a)=Q(s,a)V(s)
变化公式1 Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) Q^*(s,a)=A^*(s,a)+V^*(s) Q(s,a)=A(s,a)+V(s)
变化公式2 Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) − max ⁡ a A ∗ ( s , a ) Q^*(s,a)=A^*(s,a)+V^*(s)-\max_a A^*(s,a) Q(s,a)=A(s,a)+V(s)maxaA(s,a)

1 基本概念

  • 动作价值函数: Q π ( s t , a t ) = E [ U t ∣ S t = s t , A t = a t ] Q_\pi (s_t,a_t)=E[U_t|S_t=s_t,A_t=a_t] Qπ(st,at)=E[UtSt=st,At=at]

  • 状态价值函数: V π ( s t ) = E A [ Q π ( s t , A ) ] V_\pi (s_t)=E_A[Q_\pi(s_t,A)] Vπ(st)=EA[Qπ(st,A)]

  • 最优动作价值函数: Q ∗ ( s t , a t ) = m a x π Q π ( s t , a t ) Q^*(s_t,a_t)=max_\pi Q_\pi(s_t,a_t) Q(st,at)=maxπQπ(st,at)

  • 最优状态价值函数: V ∗ ( s ) = max ⁡ π V π ( s ) = max ⁡ a Q ∗ ( s t , a ) V^*(s)=\max_\pi V_\pi (s)=\max_aQ^*(s_t,a) V(s)=maxπVπ(s)=maxaQ(st,a)

  • 最优优势函数; A ∗ ( s , a ) = Q ∗ ( s , a ) − V ∗ ( s ) A^*(s,a)=Q^*(s,a)-V^*(s) A(s,a)=Q(s,a)V(s)

2 公式定义及推导

2.1 公式定义

V ∗ ( s ) = max ⁡ a Q ∗ ( s t , a ) V^*(s)=\max_aQ^*(s_t,a) V(s)=maxaQ(st,a)。(公式1)
A ∗ ( s , a ) = Q ∗ ( s , a ) − V ∗ ( s ) A^*(s,a)=Q^*(s,a)-V^*(s) A(s,a)=Q(s,a)V(s) (公式2)
Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) Q^*(s,a)=A^*(s,a)+V^*(s) Q(s,a)=A(s,a)+V(s) (公式3)

2.2 公式推导 max ⁡ a A ∗ ( s , a = 0 \max_a A^*(s,a=0 maxaA(s,a=0

max ⁡ a A ∗ ( s , a ) = m a x a Q ∗ ( s , a ) − m a x a V ∗ ( s ) = m a x a Q ∗ ( s , a ) − V ∗ ( s ) = m a x a Q ∗ ( s , a ) − m a x a Q ∗ ( s , a ) = 0 \max_a A^*(s,a)=max_aQ^*(s,a)-max_aV^*(s)\\ =max_aQ^*(s,a)-V^*(s)\\ =max_aQ^*(s,a)-max_aQ^*(s,a)\\ =0 amaxA(s,a)=maxaQ(s,a)maxaV(s)=maxaQ(s,a)V(s)=maxaQ(s,a)maxaQ(s,a)=0
可得 max ⁡ a A ∗ ( s , a ) = 0 \max_a A^*(s,a)=0 maxaA(s,a)=0

2.3 核心公式3优化

公式3 右边减掉为0的 max ⁡ a A ∗ ( s , a ) \max_a A^*(s,a) maxaA(s,a) 等式依然成立
Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) Q^*(s,a)=A^*(s,a)+V^*(s) Q(s,a)=A(s,a)+V(s)
Q ∗ ( s , a ) = A ∗ ( s , a ) + V ∗ ( s ) − max ⁡ a A ∗ ( s , a ) Q^*(s,a)=A^*(s,a)+V^*(s)-\max_a A^*(s,a) Q(s,a)=A(s,a)+V(s)maxaA(s,a)

2.2 使用神经网络代替A和V函数

Q ∗ ( s , a , w A , w V ) = A ∗ ( s , a , w A ) + V ∗ ( s , w V ) − max ⁡ a A ∗ ( s , a , w A ) Q^*(s,a,w^A,w^V)=A^*(s,a,w^A)+V^*(s,w^V)-\max_a A^*(s,a,w^A) Q(s,a,wA,wV)=A(s,a,wA)+V(s,wV)maxaA(s,a,wA)

3 公式为什么要加 max ⁡ a A ∗ ( s , a , w A ) \max_a A^*(s,a,w^A) maxaA(s,a,wA)

主要是为了克服神经网络一致性问题,防止网络波动, max ⁡ a A ∗ ( s , a , w A ) \max_a A^*(s,a,w^A) maxaA(s,a,wA)起到了约束作用。
比如;
1 没有约束项,A网络增加10,V网络减少10,Q值不变
2 增加约束项,A网络增加10,V网络减少10,则Q值增大10,因为对A网络取最大值时增加了10。同理A网络减少10,V网络增加10,则Q网络减少了10.

解释:约束V网络向A网络最大负值靠近,约束V网络和A网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值