多模态特征融合新突破!5大方法刷新顶会SOTA!

本文探讨了多模态数据处理中的关键环节——特征融合,介绍了五种常用方法,如基于因果注意力的网络、线性融合、双线性融合、多层特征嵌入和交叉注意力,及其在情感分析、身份验证等领域的应用和最新研究成果。文章还提供了相关论文和开源代码资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态融合可以应用于情感分析、身份验证、行为识别等多个领域,实现更精确的预测和判断。这其中,特征融合是多模态数据处理的核心环节,它不仅能够提高模型的性能,还能够增强数据的表达力,让模型能够更好地理解和处理现实世界中的复杂问题。因此,多模态特征融合迅速成为了研究热点。

为帮助同学们深入了解该方向,获得论文灵感,本文介绍多模态特征融合5种常用方法,并附上每种方法的代表性论文和最新成果(11篇),开源代码也整理了,方便各位理解并实践。

论文与代码需要的同学看文末

1.基于因果注意力

An Explainable Attention Network for Fine-Grained shipClassification Using Remote-Sensing Images

方法:论文提出一种可解释的注意力网络,用于细粒度船舶分类。该网络旨在增加对对象区分部分的关注,并探索多个注意力部分与预测结果之间的内在关系。通过结构因果模型将多头注意力机制与因果推断相结合,生成几个因果多头注意力图。将网络最后一层的卷积滤波器分为几个组,每个组根据滤波器损失函数表示特定的语义信息。

创新点:

  • 通过使用深度卷积神经网络提取输入图像的高级特征,从而实现对船只的细粒度分类。

  • 提出了一个新的解释性注意力网络,由CMAM和FAM两部分组成,用于生成可解释的图像特征。

  • 利用卷积层从高级特征图中获取多个注意力图,实现对

### 多模态特征融合技术实现方法 #### 特征级融合 特征级融合是在获取到各个模态的数据并完成初步处理后,直接将这些数据按照一定方式组合起来。这种方式能够较早地让不同来源的信息相互作用,有助于捕捉跨模态间的关联特性[^2]。 对于简单的特征级融合操作可以采用求和或者连接的方式: - **SumFusion**:通过简单相加各模态对应的向量来获得最终表征。这种方法假设所有输入具有相同维度,并且可以直接累加以反映整体情况。 ```python def sum_fusion(features_list): fused_feature = sum(features_list) return fused_feature ``` - **ConcatFusion**:把来自不同源的特征拼接成一个的高维向量作为后续网络层的输入。此策略保留了原始信息结构的同时增加了表达能力。 ```python import numpy as np def concat_fusion(features_list): concatenated_features = np.concatenate(features_list, axis=-1) return concatenated_features ``` #### 决策级融合 决策级融合则是在各自独立预测的基础上再做综合判断。这意味着每个单独的子系统先给出自己的结论或概率分布,最后才由层机制决定最优解。这种架构允许更灵活的设计,因为每部分都可以针对特定任务优化而不必考虑其他因素的影响。 #### 混合级融合 混合级融合试图结合前两种模式的优点,在中间层次上交换信息以促进更好的协作效果。具体来说就是在某些阶段保持分离状态而在另一些时候又紧密合作。 #### 模型级融合 模型级融合涉及构建共享参数空间内的联合学习框架,使得多个感知通道可以在同一套权重下共同进化发展。这通常意味着设计更加复杂的神经网络拓扑结构以便有效地传递梯度信号给每一个分支路径上的节点。 除了上述基本分类之外还有几种具体的实施手段值得注意: - **FiLM (Feature-wise Linear Modulation)**:利用条件变量调整目标函数中的线性变换系数,从而动态改变激活响应强度; - **GatedFusion**:引入门控单元控制哪些类型的交互应该被加强或是抑制,以此提高系统的适应性和鲁棒性[^3]。 ```python class GatedFusion(nn.Module): def __init__(self, input_size): super(GatedFusion, self).__init__() self.gate_layer = nn.Linear(input_size * 2, input_size) def forward(self, feature_a, feature_b): combined = torch.cat((feature_a, feature_b), dim=1) gate_value = torch.sigmoid(self.gate_layer(combined)) gated_output = gate_value * feature_a + (1 - gate_value) * feature_b return gated_output ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值