多模态融合可以应用于情感分析、身份验证、行为识别等多个领域,实现更精确的预测和判断。这其中,特征融合是多模态数据处理的核心环节,它不仅能够提高模型的性能,还能够增强数据的表达力,让模型能够更好地理解和处理现实世界中的复杂问题。因此,多模态特征融合迅速成为了研究热点。
为帮助同学们深入了解该方向,获得论文灵感,本文介绍多模态特征融合5种常用方法,并附上每种方法的代表性论文和最新成果(11篇),开源代码也整理了,方便各位理解并实践。
论文与代码需要的同学看文末
1.基于因果注意力
An Explainable Attention Network for Fine-Grained shipClassification Using Remote-Sensing Images
方法:论文提出一种可解释的注意力网络,用于细粒度船舶分类。该网络旨在增加对对象区分部分的关注,并探索多个注意力部分与预测结果之间的内在关系。通过结构因果模型将多头注意力机制与因果推断相结合,生成几个因果多头注意力图。将网络最后一层的卷积滤波器分为几个组,每个组根据滤波器损失函数表示特定的语义信息。
创新点:
-
通过使用深度卷积神经网络提取输入图像的高级特征,从而实现对船只的细粒度分类。
-
提出了一个新的解释性注意力网络,由CMAM和FAM两部分组成,用于生成可解释的图像特征。
-
利用卷积层从高级特征图中获取多个注意力图,实现对