针对传统的图神经网络在处理非结构化数据、捕捉高阶关系等方面的局限性,研究者们提出了众多优化方案。
这其中,超图神经网络、几何图神经网络、动态图神经网络作为GNN发展的前沿方向,不仅提供了更加丰富和灵活的方法来处理各种复杂的图数据,提高模型在特定领域的性能和应用范围,同时也在交叉领域有广泛的多元化应用。是我们做创新发论文的好方向。
本文介绍图神经网络这3大创新方向,每个方向都附有代表论文以及相应代码(共15篇),方便同学们理解学习以及复现。
论文原文以及代码需要的同学看文末
动态图神经网络
一种专门设计来处理随时间变化的图数据的深度学习模型。能够捕捉和分析图结构中的时间序列信息,对于理解和预测图的动态行为特别有用。在社交网络分析、交通预测、金融市场分析等多个领域都有广泛的应用。
代表论文1
FREEDYG: FREQUENCY ENHANCED CONTINUOUSTIME DYNAMIC GRAPH MODEL FOR LINK PREDICTION
方法:本文提出了一种名为FreeDyG的频率增强连续时间动态图模型,专为链接预测而设计。该方法包括一个新颖的频率增强MLP-Mixer层,能够有效捕捉频域中观察到的周期性时间模式和“shift”现象。同时,作者还引入了一个节点交互频率编码器,同时提取节点对之间的交互频率信息和共同邻居的比例信息。