2024年了,图神经网络方向还好发论文吗?答案当然是能。
图神经网络在处理非欧空间数据和复杂特征方面具有明显的优势,且已成为了深度学习领域的热点,在学术界和工业界都有着广泛的研究和应用。不仅如此,图神经网络与CV和NLP领域交叉,容易有创新点,因此仍然是我们发论文的好方向。
但想要找到创新点,我们需要在传统的GNN基础上,考虑一些尚未被充分挖掘的方向和技术挑战。根据这点,我总结了一些值得学习借鉴的图神经网络创新思路,分为异构图处理、动态图学习、扩散3D数据、GNN隐私、GNN可解释性、技术结合、跨领域应用7大方向,并分享了每个方向的必读论文和代码17篇,包含2024年最新。
论文和代码看文末获取
异构图处理
1.Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
通过消息传递的顺序处理异质性和过平滑问题
「简述:」论文提出了一种有向图神经网络(Ordered GNN),用于解决异质性和过平滑问题。传统的图神经网络中,消息传递是随机的,可能导致节点表示变得难以区分,无法有效地学习远离的节点之间的依赖关系。同时,具有不同标签的相邻节点的特征可能会被错误地混合在一起,导致异质性问题。为了解决这个问题,作者提出了一种有序的消息传递方法,将特定块的神经元用于特定跳数内的消息传递。
2.Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
图卷积神经网络中的异质性和过平滑问题
「简述:」论文提出了一种统一的理论框架,解释了图卷积神经网络(GCN)中的过平滑和异质性问题。作者通过两个量化指标来描述节点:节点的相对度和节点级别的异质性。他们发现这两个指标之间的相互作用可以解释过平滑和异质性问题,并预测GCN的性能。基于这些见解,作者提出了两种策略来解决这些问题,并在实验中证明了其有效性。
3.Revisiting heterophily for graph neural networks
重新审视图神经网络中的异质性问题
「简述:」论文关注图神经网络(GNNs)在处理异质性数据集时的性能问题。作者提出了一种新的自适应通道混合(ACM)框架,可以更好地应对节点之间的不同相似性分布。在基准节点分类任务上,使用ACM增强的基线模型表现出更好的性能。