基于最优传输思想设计的分类损失函数EMO解决了交叉熵损失函数在某些场景暴露的一些问题,如偏离评价指标、过度自信等,它源于交叉熵损失函数,能大幅提高 LLM 的微调效果。
交叉熵损失函数是最常用的一种损失函数。在机器学习中,损失函数是衡量模型性能的关键性指标,它不仅指导着模型的训练过程,影响模型的优化方向,还直接影响到最终模型的泛化能力和实用性,对于实现高效、准确的机器学习模型至关重要。
常用的损失函数主要可以分为两大类:分类问题的损失函数和回归问题的损失函数。今天我就从这两大类入手,介绍6个深度学习最常用的损失函数,每种损失函数都附上了2024最新的研究成果(共18篇),方便各位学习。
论文和代码需要的同学看文末
分类问题的损失函数:
交叉熵损失函数
主要用于度量分类问题中预测值与真实标签之间的差距,尤其在多分类问题中表现良好,如图像分类、自然语言处理等领域。
例文:Multimodal Neural Network System for Skin Cancer Recognition with a Modified Cross-Entropy Loss Function
方法:本研究提出了一种具有修改的交叉熵损失函数的多模态神经网络系统,用于识别恶性色素性皮肤病变。通过使用权重系数来修改学习损失函数,可以提高神经网络分析的准确性,并减少将皮肤癌误认为良性的假阴性预测的数量。