为更灵活、更高效地解决各种复杂和动态变化问题,研究者开始着眼于将迁移学习与其他技术相结合。
这种结合充分发挥了迁移学习的优势,如知识转移、数据效率和加速学习过程等,让模型能够从更高的基准开始学习,更快地适应新任务,节省时间和资源,并在训练过程中更高效地改进性能,提升泛化能力。
这些优势让其成为了众多研究者追求的热点,也让迁移学习+的写作模式逐渐成为了当前发文的主流,在各种学术期刊和会议上都有相当多的研究成果。
本文整理了9个最新的迁移学习结合创新方案,包含大火的图神经网络、物理信息神经网络等主题,希望能给各位提供新的思路。
全部论文合集需要的同学看文末
Gearbox fault diagnosis method based on lightweight channel attention mechanism and transfer learning
方法:论文提出了一种基于轻量级通道注意机制和迁移学习的齿轮箱故障诊断方法。该方法能够解决由于样本分布差异大和样本有限导致的故障诊断性能差的问题。使用轴承和齿轮数据集验证了所提出模型的分类和泛化能力。
创新点:
-
轻量级通道注意机制(LECA)