为解决传统时间序列预测方法在处理复杂和非线性问题上的局限性,研究者们致力于探索深度学习的方法。
目前,用深度学习做时间序列预测主要有4大创新方向:基于MLP、基于Transformer、基于CNN以及基于RNN。这些深度学习模型通过端到端学习直接生成预测,简化流程提高效率。它们能够处理高维数据,并通过大数据训练提升预测精度和适应性,为时序预测提供了新颖而强大的解决方案,也因此成为了学术研究和发表论文的热门领域。
本文介绍深度学习时序预测这4大创新方向,每个方向都附有代表论文以及代码(共22篇),方便同学们理解学习以及复现。
论文原文以及开源代码需要的同学看文末
基于MLP的模型
使用多层感知器来自动学习和提取时间序列数据的特征,适用于捕捉复杂模式并进行预测,但可能需要结合其他技术以更好地处理时间依赖性。
代表论文:Long-term Forecasting with TiDE: Time-series Dense Encoder
方法:本文介绍了一种简单且高效的多层感知器(MLP)架构,称为时间序列稠密编码器(TiDE),用于长期时间序列预测。TiDE模型通过使用密集的MLP对时间序列的过去和协变量进行编码,并使用密集的MLP对时间序列和未来协变量进行解码。