在已经看完某一系列论文之后,很多人在写论文时依然苦恼于没有创新点,其实只要抓住以下这五点,就能轻松搞定:
-
数据集的改动
-
模型的问题
-
现有结构替换
-
特定场景的应用
-
模块的缝合
从这五点出发,锁定有价值的方向,快速形成一篇论文。
1.数据集的改动
不对模型进行大的调整,而是通过改变输入数据来考虑问题。例如,增加噪声、几何变换、遮挡处理、光照变化以及场景依赖等。
我们可以从数据本身和数据增强两个角度来切入,也就是说当数据发生变化时,限制方法的性能是否会变差?如果模型层面不变动,如何仅通过改变数据集来分析特定领域方法的性能变化或提升方法性能?这种思路相对来讲是比较简单的。
以DataCLUE为例
这里为了让大家可以更好的理解并运用,我给大家收集了一份超全数据集仓库,里面有包括目标检测、工业缺陷检测、人脸识别、姿态估计、图像分割、图像识别等12个方向90多个深度学习开源数据集。