为解决传统方法的局限性,研究者们提出了将交叉注意力机制应用于医学图像分割。
交叉注意力机制能更有效地整合来自不同模态/尺度的特征,让模型同时捕捉全局和局部信息,加速学习并减少干扰。这样不仅可以提高分割的精度,还可以减少训练时间,提高分割的效率。
因此这种策略成为了目前医学图像领域的重要研究方向,为我们实现更高的综合性能提供了新的解决思路。
本次分享8种最新的用交叉注意力做医学图像分割的创新方案,开源代码已附,论文创新点做了简单提炼,供大家参考学习寻找灵感。
论文原文以及开源代码需要的同学看文末
Dual Cross-Attention for Medical Image Segmentation
方法:论文介绍了一种用于医学图像分割的基于U-Net的架构中加强跳跃连接的Dual Cross-Attention (DCA)方法。DCA包括通道交叉注意力(CCA)和空间交叉注意力(SCA)模块,分别在通道和空间维度上捕捉远距离依赖关系。
创新点:
-
提出了Dual Cross-Attention (DCA)机制