时空预测又有新突破啦!港大、华南理工等提出了时空大模型UrbanGPT,在性能上猛超现有SOTA,实现零样本即可时空预测!
另外还有清华的首个通用城市时空预测模型UniST、能即插即用快速适配的时空提示调整机制FlashST...这些效果非常nice的研究都被ICML等各大顶会顶刊收录,可见今年的时空预测依然是好发论文的方向。
目前有关时空预测的创新偏向智能化和自动化,专注于提供更准确的预测信息,以满足各种实际场景需求。因此这个方向的发展空间还是很大的,有很多创新点等我们去挖掘。
为了方便想发论文的同学,我这次整理了9篇时空预测相关的顶会顶刊paper,都是最新,这些方法的创新点我也简单提炼了,方便大家参考,开源代码也有。
论文原文+开源代码需要的同学看文末
UrbanGPT: Spatio-Temporal Large Language Models
方法:论文提出了UrbanGPT,它无缝地将空间-时间依赖编码器与指令调整范式相结合,有效地将空间-时间上下文与大语言模型相匹配。通过将这些组成部分整合在一起,该模型能够更好地理解和预测空间-时间模式,在零样本空间-时间学习场景中展现出了卓越的泛化能力,超过了现有基线模型的表现。