今天来推荐一个深度学习领域很有创新性的研究方向:LSTM结合GNN。
GNN擅长处理图数据关系和特征,而LSTM擅长处理时间序列数据及长期依赖关系。通过将两者结合,我们可以有效提升时间序列预测的准确性和效率,尤其是在处理空间和时间数据时。
比如一种用于出租车需求和供应预测的hetGNN-LSTM算法,结合了异构图神经网络和LSTM,比现有SOTA推理速度快了10倍!
目前这种策略已经被广泛应用于交通流量预测等多个场景,创新空间十分可观。于是我这次整理了8种最新的LSTM+GNN结合创新方案(附代码),并简单提炼了可参考的idea,希望能给各位的论文添砖加瓦。
论文原文+开源代码需要的同学看文末
Semi-decentralized Inference in Heterogeneous Graph Neural Networks for Traffic Demand Forecasting: An Edge-Computing Approach
方法:论文提出了一种结合了异构图神经网络(hetGNN)和长短期记忆网络(LSTM)的算法,用于出租车需求和供应预测。与现有最先进方法相比,hetGNN-LSTM实现了大约10倍的推理时间减少,并在不同的分散化设置中显示出高准确性预测的性能。