时间序列领域最近几年的变化非常大,因为尽管传统的时序模型已经可以解决很多问题,但深度学习的加入给我们带来了全新的发展视角,出现了很多新的时间序列研究方向,比如Mamba+时间序列、扩散模型+时间序列...目前,时间序列依然备受关注,在CVPR、ICLR、AAAI等顶会上都是发文的热门主题。
这篇文章就给大家汇总一下最近比较热门的时间序列研究创新点,目前共整理了6个方向,57篇。
-
时间序列基础模型
-
扩散模型+时间序列
-
Mamba+时间序列
-
频域+时间序列
-
多尺度时间序列
-
多变量时间序列
全部论文+开源代码需要的同学看文末
时间序列基础模型
ICLR 2025 UTSD: UNIFIED TIME SERIES DIFFUSION MODEL
方法:论文通过提出统一时间序列扩散模型(UTSD)来解决跨领域时间序列建模的挑战,该模型利用扩散模型的概率分布建模能力,以条件采样生成目标领域的预测序列,显著提高了多领域数据的生成稳定性和准确性,并在各大基准测试中表现出色的零样本泛化能力。
创新点:
-
提出了创新的条件去噪架构,结合条件网络和去噪网络,捕捉多尺度波动模式,指导序列的生成。
-
建立了统一的时间序列扩散模型,通过建模多域概率分布,实现目标域的直接预测生成。
ICLR 2025 In-Context Fine-Tuning for Time-Series Foundation Models
方法:本文研究了一种时间序列基础模型的上下文微调方法,基于NLP大型语言模型的上下文学习能力,采用无监督预训练和上下文微调相结合的方法,显著提升了零样本预测的准确性,超越了传统的深度学习和统计模型,并在无梯度更新的情况下达到接近显式微调模型的性能。
创新点:
-
提出了一种新的上下文内微调方法,用于时间序列基础模型的预测。
-
采用了一种无位置编码(NoPE)策略来预训练时间序列基础模型。
-
在模型架构中,作者引入了跨示例的注意力机制,通过可学习的分隔符令牌来区分不同的上下文示例。
频域+时间序列
ICLR 2025 FredNormer: Frequency Domain Normalization for Non-stationary Time Series Forecasting
方法:本文提出了一种名为FredNormer的新方法,旨在通过频域建模来解决时间序列预测中的分布偏移问题,利用频率稳定性度量和可学习的加权层来动态调整频谱中的关键频率分量,增强模型的泛化能力,并在多个数据集上显著提升了预测精度。
创新点:
-
提出了一种新的频率稳定性测量方法,定义为频谱中的各频率成分的统计稳定性。
-
引入了频率稳定性加权层,通过可训练的线性投影调整频率稳定性测量,以引入样本特定的变化。
-
FredNormer模块通过从频域的视角观察数据集,自适应地增加关键频率成分的权重。
多尺度时间序列
ICLR 2025 MMFNET: MULTI-SCALE FREQUENCY MASKING NEURAL NETWORK FOR MULTIVARIATE TIME SERIES FORECASTING
方法:论文通过提出MMFNet模型,利用多尺度频域分解技术填补了传统时间序列预测在复杂非平稳行为捕捉上的研究空白,显著提升了高频信息在不同时间段和尺度上的处理能力,从而优化预测精度。
创新点:
-
MMFNet首次采用多尺度频域分解方法,以捕捉频域中的动态变化。
-
MMFNet利用可学习的频率掩码,根据时间序列片段的频谱特性,自适应地过滤掉无关的频率成分。
关注下方《学姐带你玩AI》🚀🚀🚀
回复“57时序”获取全部方案+开源代码
码字不易,欢迎大家点赞评论收藏