姚期智团队开源新型注意力机制!降本90%...2025发顶会还得靠Attention

2025年还能靠改注意力机制发论文吗?姚期智大佬团队给出了答案,他们提出了一种新型注意力机制TPA,节省了90%内存占用但不降性能,一统了现代注意力设计!

可以看出,现在简单的改层数对于注意力机制来说已经不算创新了,我们需要思考更多...这里就建议大家考虑多头注意力机制、注意力机制融合、层次注意力机制、跳过连接和注意力门控、自适应注意力权重等思路,上述姚院士团队的方法就属于多头注意力机制的改进,同时也与自适应注意力权重相关。

如果大家感兴趣,可以看看最新的前沿成果找找灵感,我这边也已经帮同学们整理好了40个注意力机制创新方案,不想多花时间找资料的可以直接拿,也欢迎大家分享本文给好友同学~

全部论文+开源代码需要的同学看文末

Tensor Product Attention is All You Need

方法:论文提出了一种新的注意力机制——张量乘积注意力(TPA),通过对查询、键和值进行低秩张量分解,显著减少推理时的KV缓存大小,并提高模型质量,提出的Tensor ProducT ATTenTion Transformer (T6) 架构在多个语言建模任务中超越了传统Transformer基线(如MHA, MQA, GQA等)。

### 关于 AAAI 2025 大会中的注意力机制 在探讨AAA I2025大会中与注意力机制相关的论文或议题时,可以预见会议将聚焦于该领域最新的进展和技术应用。近年来,深度学习模型已经变得越来越复杂和庞大[^1],这表明未来的研究将继续探索如何优化现有架构以及创建新的方法来处理更大规模的数据集。 对于注意力机制而言,在自然语言处理(NLP)方面取得了显著成就之后,研究者们正试图将其扩展到其他领域,比如计算机视觉、时间序列分析等。因此,在即将举行的AAAI 2025大会上可能会讨论如下主题: - **多模态数据融合下的改进型注意力算法**:随着多媒体信息的增长,能够有效结合文本、图像等多种形式输入的新型注意力建模成为热点之一。 - **轻量化注意力网络的设计与实现**:鉴于传统Transformer结构计算成本较高,针对资源受限环境(如移动设备)下高效运行的小型化版本将是重要方向。 ```python import torch.nn as nn class LightweightAttention(nn.Module): def __init__(self, d_model, num_heads=8): super(LightweightAttention, self).__init__() self.d_k = d_model // num_heads ... def forward(self, q, k, v, mask=None): ... ``` - **自适应动态调整权重策略**:使模型可以根据不同任务特点自动调节各部分的重要性程度,从而提高泛化能力和鲁棒性。 - **跨域迁移学习中的注意力引导**:利用源领域已有的知识指导目标领域的训练过程,特别是当两个领域间存在较大差异的情况下尤为关键。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值