半监督学习之Noisy Student

本文介绍了如何利用半监督学习的伪标签方法训练模型,通过教师网络对无标签数据生成软标签,然后用这些标签训练学生网络。学生网络通过数据和模型噪音提高泛化能力,同时采用数据过滤和平衡来优化训练。实验表明软标签对于域外图像的指导更有效,且噪声、随机深度和数据增强对于提升学生模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本结构

半监督学习之伪标签学习
https://blog.csdn.net/weixin_42764932/article/details/112910467

和伪标签学习差不多

  1. 为有标签和无标签的图片。

  2. 使用有标签的数据、标准交叉熵损失训练了一个EfficientNet作为教师网络。

  3. 用不添加噪音的教师网络,在无标签数据上生成伪标签,伪标签可以是soft label(持续分布),或者hard label(one-hot分布)。文章说软标签效果更好。

  4. 在有标签和无标签数据下,使用交叉熵训练一个添加噪音的学生网络。

  5. 通过把学生网络视为教师网络,迭代以上步骤,生成新的伪标签,并训练学生网络。

学生模型种添加噪音的作用:

  1. 数据噪音:总所周知提高泛化能力,例如:不同图像同一个类这个不变量鼓励学生模型超越老师学习,用更多不同的图像做出相同的预测。

  2. 模型噪音:提高模型鲁棒性和泛化能力

具体设置:

  1. 随机深度:幸存概率因子为 0.8

  2. dropout:分类层引入 0.5 的丢弃率

  3. 随机增强:应用两个随机运算,其震级设置为 27

  4. 数据过滤:将教师模型中置信度不高的图片过滤,因为这通常代表着域外图像

  5. 数据平衡:平衡不同类别的图片数量

  6. 教师模型输出的标签使用1)软标签(eg:[0.1,0.2,0.6,0.9]) or 2)硬标签(eg:[1,0,1,0,0,1]),,经过实验表明,软标签对域外图像又更强的指导作用,所以作者才用软标签作为伪标签格式

在这里插入图片描述

噪音、随机深度、数据扩充起着重要的作用使学生模型胜过教师模型,对此有人提出是不是对未标记数据加入正则项以防止过拟合来代替噪音,作者在实验中说明这是不对的。因为在去噪的情况下,未标记图像的训练损失并没有下降多少以此说明模型并没有对未标记数据过拟合。

参考https://blog.csdn.net/qq_39426225/article/details/105571340?utm_medium=distribute.pc_relevant.none-task-blog-searchFromBaidu-2.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-searchFromBaidu-2.control

### 处理教育环境中嘈杂学生的方法 在教育环境中,处理嘈杂的学生是一个常见的挑战。为了有效管理课堂秩序并确保教学顺利进行,教师可以采取多种策略。 #### 1. 建立清晰的行为期望 制定明确的课堂规则和行为准则有助于预防不当行为的发生。通过与学生共同讨论这些规定,可以使他们更加理解并愿意遵守[^1]。 #### 2. 使用积极强化技术 当观察到良好的行为时,及时给予表扬和其他形式的认可能够鼓励更多正面表现。这种方法不仅适用于个体学生,也可以用于整个班级群体激励机制中。 #### 3. 提供结构化学习活动 设计有趣而具有吸引力的任务来吸引学生的注意力,减少分心的机会。例如,在小组合作项目期间安排特定角色分配给每位成员;或者利用多媒体资源如视频片段作为辅助材料引入新概念。 #### 4. 实施个别辅导和支持措施 对于那些持续表现出干扰性的同学,则可能需要额外的关注和个人化的干预计划。这包括了解背后原因(比如家庭问题),并与家长沟通协作寻找解决办法;同时也考虑心理咨询服务等外部支持渠道。 ```python def handle_noisy_students(students_behavior): """ A function to simulate handling strategies for noisy students. Args: students_behavior (list): List containing behavior levels of each student Returns: str: Message indicating the approach taken based on average class noise level """ avg_noise_level = sum(students_behavior) / len(students_behavior) if avg_noise_level < 2: return "Class is well-behaved, continue with planned activities." elif 2 <= avg_noise_level < 4: return "Implement positive reinforcement techniques and structured learning tasks." else: return "Consider individual counseling sessions or external support services." ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值