微分方程(Blanchard Differential Equations 4th)中文版Section2.4

特殊系统的附加分析方法

检查解

正如上面所提到的,找到系统的解的公式可能很困难甚至是不可能的。然而,一旦我们得到了这些公式,检查它们是否确实是解就相对简单。这一观察非常重要,原因有二。首先,我们可以重新检查我们在计算公式时可能做的复杂代数。其次,更重要的是,许多“解题技巧”实际上只是复杂的猜测方法。一旦我们做出猜测,我们就需要测试以确认我们的猜测是否真的成立。

例 1

考虑系统
d x d t = − x + y \frac{dx}{dt} = -x + y dtdx=x+y
d y d t = − 3 x − 5 y . \frac{dy}{dt} = -3x - 5y. dtdy=3x5y.

我们可以将这个系统用向量记法重写为

d Y d t = F ( Y ) , \frac{dY}{dt} = F(Y), dtdY=F(Y),

其中 Y ( t ) = ( x ( t ) , y ( t ) ) Y(t) = (x(t), y(t)) Y(t)=(x(t),y(t)) F ( x , y ) = ( − x + y , − 3 x − 5 y ) F(x, y) = (-x + y, -3x - 5y) F(x,y)=(x+y,3x5y)。现在,验证

Y ( t ) = ( x ( t ) , y ( t ) ) = ( e − 4 t − 3 e − 2 t , − 3 e − 4 t + 3 e − 2 t ) Y(t) = (x(t), y(t)) = (e^{-4t} - 3e^{-2t}, -3e^{-4t} + 3e^{-2t}) Y(t)=(x(t),y(t))=(e4t3e2t,3e4t+3e2t)

是否为这个系统的解。

一方面,计算 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 的导数,得

d x d t = d ( e − 4 t − 3 e − 2 t ) d t = − 4 e − 4 t + 6 e − 2 t \frac{dx}{dt} = \frac{d(e^{-4t} - 3e^{-2t})}{dt} = -4e^{-4t} + 6e^{-2t} dtdx=dtd(e4t3e2t)=4e4t+6e2t

d y d t = d ( − 3 e − 4 t + 3 e − 2 t ) d t = 12 e − 4 t − 6 e − 2 t . \frac{dy}{dt} = \frac{d(-3e^{-4t} + 3e^{-2t})}{dt} = 12e^{-4t} - 6e^{-2t}. dtdy=dtd(3e4t+3e2t)=12e4t6e2t.

另一方面,将 x ( t ) x(t) x(t) y ( t ) y(t) y(t) 代入系统的右侧,得

− x + y = − ( e − 4 t − 3 e − 2 t ) + ( − 3 e − 4 t + 3 e − 2 t ) = − 4 e − 4 t + 6 e − 2 t -x + y = -(e^{-4t} - 3e^{-2t}) + (-3e^{-4t} + 3e^{-2t}) = -4e^{-4t} + 6e^{-2t} x+y=(e4t3e2t)+(3e4t+3e2t)=4e4t+6e2t

− 3 x − 5 y = − 3 ( e − 4 t − 3 e − 2 t ) − 5 ( − 3 e − 4 t + 3 e − 2 t ) = 12 e − 4 t − 6 e − 2 t . -3x - 5y = -3(e^{-4t} - 3e^{-2t}) - 5(-3e^{-4t} + 3e^{-2t}) = 12e^{-4t} - 6e^{-2t}. 3x5y=3(e4t3e2t)5(3e4t</

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值