微分方程(Blanchard Differential Equations 4th)中文版Section2.7

2.7 SIR模型在流行病中的应用

H1N1流感,通常被称为“猪流感”,在2009年引发了全球大流行。疫情在年初从墨西哥开始,墨西哥政府最终关闭了墨西哥市的许多公共和私人设施,以试图限制疾病的传播。然而,病毒还是传播到了全球。尽管公共卫生官员建议不这样做,美国的一些夏令营还是采取了如使用达菲这种药物的预防性措施。更普遍的做法是,我们被鼓励经常洗手、咳嗽时掩住袖子,并在考试期间待在家里。

这场大流行似乎在2009年11月达到了顶峰,到2010年春季,病例数量迅速下降。世界卫生组织在2010年8月宣布大流行结束。

建模流行病

传染病在群体中传播涉及从群体层面到个体细胞和病毒层面的复杂互动。然而,从相对简单的模型中仍然可以获得有趣且有用的信息。一个经典模型是Kermack和McKendrick于1927年提出的SIR模型。在这个模型中,群体被划分为三组:易感者(susceptible individuals)、感染者(infected individuals)和恢复者(recovered individuals)。

在这个模型中, S ( t ) S(t) S(t) 表示在时间 t t t 时能够感染该病的群体比例, I ( t ) I(t) I(t) 表示已经感染该病并能将其传播给易感者的群体比例, R ( t ) R(t) R(t) 表示已经从该病中恢复且不能再次感染的群体比例。这个模型适用于流感疫情,因为一旦一个人感染了某种特定的流感菌株,他们的免疫系统会防止他们再次感染这种菌株。由于流感传播速度较快,我们可以假设时间以天为单位。虽然大多数人会较容易地从流感中恢复,但仍然有较低的死亡率。那些没有幸存的人被包括在 R ( t ) R(t) R(t) 中。

我们假设群体中的每个人要么是易感者,要么是感染者,要么是恢复者,即
S ( t ) + I ( t ) + R ( t ) = 1 S(t) + I(t) + R(t) = 1 S(t)+I(t)+R(t)=1
对所有 t t t 都成立。此外,我们假设疾病传播相对较快,因此合理假设这些群体大小的变化仅由疾病引起。

为了建立模型,我们做出一些更具体的假设。首先,我们假设易感者和感染者的互动率与易感者数量和感染者数量的乘积成正比,即与 S ( t ) S(t) S(t) I ( t ) I(t) I(t) 的乘积成正比。这些互动中的一部分会导致易感者感染上该病。我们还假设感染者的恢复率与感染者的数量成正比。

基于这些假设,我们的模型为
d S d t = − α S I \frac{dS}{dt} = -\alpha S I dtdS=αSI
d I d t = α S I − β I \frac{dI}{dt} = \alpha S I - \beta I dtdI=αSIβI
d R d t = β I , \frac{dR}{dt} = \beta I, dtdR=βI,
其中 α \alpha α 是“传染”参数, β \beta β 是“恢复”参数。如果我们知道 S ( t ) S(t) S(t) I ( t ) I(t) I(t),那么 R ( t ) = 1 − ( S ( t ) + I ( t ) ) R(t) = 1 - (S(t) + I(t)) R(t)=1(S(t)+I(t))(参见练习1)。因此,我们只需要跟踪 S ( t ) S(t) S(t) I ( t ) I(t) I(t),并且可以考虑平面系统
d S d t = − α S I \frac{dS}{dt} = -\alpha S I dtdS=αSI

  • 12
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值