【论文阅读】基于卷积神经网络的高分辨率无人机RGB图像中的林树种

提出了一种基于U-net的分割算法和CNNs的分类算法综合

“图像处理以及深度学习均在RStudio上完成”

“通过减去数字地形模型来计算归一化数字表面模型(nDSM)”

抽象

在植被遥感中使用无人驾驶飞行器(UAV)可以灵活且经济高效地获取非常高分辨率的图像。尽管如此,目前绘制森林树种地图的方法并没有利用相关的、丰富的空间信息。在这里,我们评估了卷积神经网络(CNN)和来自无人机的超高分辨率RGB图像在温带森林树种测绘方面的潜力。我们使用多旋翼无人机在黑森林南部地区和德国海尼希国家公园的 2 公顷温带森林上获得了非常高分辨率 (<51 厘米) 的 RGB 图像。为了充分利用CNN的端到端学习能力,我们使用了语义分割方法(U-net),该方法同时对图像中的树种进行分割和分类。凭借研究区域、场地条件、光照特性和物候方面的多样化数据集,我们准确地绘制了 1 种树种、0 个属级类别、枯木和森林地面(平均值 F73 得分 1.0)。CNN 训练期间较大的切片大小会对代表性不足类的模型精度产生负面影响。来自归一化数字表面模型的额外高度信息略微提高了模型精度,但增加了计算复杂性和数据要求。较粗糙的空间分辨率大大降低了模型精度(26 cm 分辨率下的平均 F32 得分为 <>.<>)。我们的研究结果强调了无人机在森林树种测绘中可以发挥的关键作用,因为空中和星载遥感目前无法提供可比的空间分辨率。CNN的端到端学习能力使得广泛的预处理部分过时。使用庞大而多样的数据集有助于CNN的高度通用化,从而促进可转移性。高分辨率无人机图像和CNN的协同作用为绘制森林树种提供了一种快速、灵活而准确的方法。

关键字:深度学习;森林清单;卷积神经网络;树种分类;无人机系统;温带森林

1 简介

        在分析高空间分辨率遥感数据时,最有效的深度学习算法是卷积神经网络(CNN),因为它们是专门为分析空间模式而设计的。

一些研究已经使用CNN和高分辨率遥感数据来绘制树种图。(高光谱)Fricker 等人(2019 年)专门针对森林环境,使用 CNN 根据机载数据对针叶混交林中的七种树种进行分类和绘制,高光谱结果非常准确,伪 RGB 数据结果中等准确。

Trier等人(2018)还使用机载高光谱数据使用CNN对北方森林中的松树,云杉树和桦树进行分类。 Nezami 等人(2020 年)显示了对具有高光谱和 RGB 图像以及冠层高度模型的不同组合测试 CNN 的相同树种进行分类的非常准确的结果。到目前为止,绘制森林中的树种通常需要高光谱分辨率数据,这对于非专业用户来说很麻烦。

        仅依靠 RGB 信息,使用 CNN 将单个树种与其他物种的背景准确映射(Kattenborn 等人,2020 年,Kattenborn 等人,2019 年a,洛佩斯-希门尼斯等人,2019 年,莫拉莱斯等人,2018 年,瓦格纳等人,2020 年)。 Natesan 等人(2019 年)使用 CNN 将先前从 RGB 数据中提取的树冠分类为白松、红松和非松。尽管有光谱分辨率,但许多研究在分类之前使用了额外的预处理步骤(例如,从辅助遥感数据中分割树或树定位、

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值