6.8 二级引用高分论文

6.8 Cha J, Lim E. A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on Wi-Fi fingerprinting[J]. Applied Soft Computing, 2022, 120: 108624.(基于Wi-Fi指纹的大规模室内定位的分层辅助深度神经网络架构)

将分类任务作为辅助网络插入到回归神经网络中,提出了一种新的框架,称为层次辅助深度神经网络(Hierarchical Auxiliary Deep Neural NetworkHADNN),它不仅可以解决随着类别数量增加而带来的可扩展性问题,而且可以进一步减少层次信息误差。在HADNN中,给定数据的分层辅助信息在训练阶段被提供和使用。由于室内定位数据中存在两种可能的分层信息情况:(1)只给定楼层和(2)同时给定建筑物和楼层,本文提出两种架构一种只利用楼层信息,另一种同时使用建筑物和楼层信息

6.23 Turgut Z, Kakisim A G. An explainable hybrid deep learning architecture for WiFi-based indoor localization in Internet of Things environment[J]. Future Generation Computer Systems, 2024, 151: 196-213.(一种可解释的混合深度学习架构,用于物联网环境下基于wifi的室内定位)

5.11Alitaleshi A, Jazayeriy H, Kazemitabar J. EA-CNN: A smart indoor 3D positioning scheme based on Wi-Fi fingerprinting and deep learning[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105509.(5.11 EA-CNN:一种基于Wi-Fi指纹和深度学习的智能室内3D定位方案)

提出了一种将极限学习机自编码器(ELM-AE)与二维CNN相结合的模型。ELM-AE通过降低输入维度来提取关键特征,而CNN则通过训练有效地在定位阶段取得显著的性能。为提高定位精度并应对数据不足问题,设计一种在原始指纹图谱上频繁添加噪声数据的数据增强策略。利用每个MAC地址的RSS值这一统计特性对输入噪声进行调整。在Tampere和UJIIndoorLoc两个数据集上对所提系统的性能进行了评估。

16.4 Liu M, Liao X, Gao Z, et al. FT-Loc: A Fine-Grained Temporal Features Based Fusion Network for Indoor Localization[J]. IEEE Internet of Things Journal, 2023.(16.4-FT-Loc:基于细粒度时间特征的室内定位融合网络)

16.5 Zhao Y, Gong W, Li L, et al. An Efficient and Robust Fingerprint Based Localization Method for Multi Floor Indoor Environment[J]. IEEE Internet of Things Journal, 2023.(16.5一种高效鲁棒的多楼层室内环境指纹定位方法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值