14.4(2021)多视图变分深度学习在实际室内定位中的应用

文章来源:

以下是论文的中文翻译

摘要

无线信道状态信息(CSI)测量的多个接收器,是一个很好的资源,用于使用判别模型的机器学习定位发送设备。然而,当射频地图复杂时,如在建筑物走廊中,CSI定位困难重重。介绍了一种基于WiFi CSI的视角选择深度学习(view-selective deep learning,VSDL)室内定位系统。利用多组接入点(ap)获取的CSI进行多视角训练,在有监督的变分深度网络上生成潜在特征。然后将该信息应用于额外的网络进行主导视图分类,以最小化定位的回归损失。由于拒绝了来自多个视角的无信息量的潜在特征,该方法可以实现1.28 m的定位精度,在复杂建筑环境下的实际应用中比已知的最好精度高出30%。据我们所知,这是第一次应用变分推理并构建无线电定位实用系统的方法。本文研究了一种对多视图数据进行监督学习的方法,其中有信息视图和无信息视图共存。

索引项-信道状态信息,室内定位,联合优化,机器学习,多视角数据,真实建筑环境,实用定位,变分推断,视角分类。

I. INTRODUCTION

具有多个射频源渲染的多视角实施例的机器学习应用可以利用不同视角之间的特征相关性来获得室内定位的最佳模型。与全球定位系统(GPS)室外定位精度5 ~ 10 m相比,室内定位对发射机设备的定位精度要求更高。本文应用变分推理[1]来改进实际WiFi环境中基于多视角无线电信号数据的发射设备定位。[2]报告称,通过从单一视图变分推理可以有效地生成多视图数据。变分推理也被用于广义判别模型,如聚类[3]、分类[4]和回归[5],以利用概率潜在特征空间。

近年来,基于WiFi信道状态信息(channel state information, CSI)的室内定位方法取代了基于标量值的接收信号强度指示(received signal strength indicator, RSSI)[6]方法。WiFi正交频分复用(OFDM)信道的子载波CSIs形成复杂的矢量信息,以极好的定位精度提供了丰富的无线电定位信息。类似于从多个图像视图[7]生成单个图像视图的示例,在分布式位置的多组接收器中检索的无线电CSIs可以形成多视图信息,用于机器学习定位发送设备。

从深度网络定位的角度来看,变分深度学习(variational deep learningVDL)[8]可以联合优化高斯过程边缘似然的目标来训练多视图CSI的深度网络。变分推理的重参数化[9]派生平均场潜特征向量来表示输入的后验。与独立的深度网络、支持向量机(svm)和其他最新系统相比,VDL可以显著提高分类和回归性能[9]。根据VDL的性质,即提取的潜在向量的元素没有相关性,我们可以在多元标准正态分布和每个CSI视图之间进行映射。由于VDL通过较少的独立高斯过程来保证其隐向量近似于标准正态分布,因此可以设计回归模型来缓解无线电信号的不确定性,提高定位精度。

 A. Related Work

在定位系统的服务器端,可以同时从多个接收器收集WiFi的CSI和RSSI,从而找到发射设备的位置。许多基于rssi的定位系统[15]-[18]已经被开发出来。当人们在建筑物中行走时,也可以使用跟踪[19]的设备。大多数算法采用卡尔曼或粒子滤波来估计基于贝叶斯模型的似然由于RSSI是物理通信距离的函数,因此虽然距离模型不准确,但可以设计距离模型。为了精细化地估计目标位置,几种利用RSSI大数据的机器学习方法被引入。基于SVM[20]、神经网络(NN)集成[21]、k最近邻(kNN)[22]、[23]的系统尝试对NN数据库进行指纹识别并找到目标设备位置。然而,在真实的建筑环境中,由于RSSI的单维特性,系统仍然无法获得可靠的定位精度。这种物理限制限制了技术的发展,同时要求密集测量。此外,由于在给定的网络拓扑结构下,仅使用信号强度信息很难找到特征模式,因此RSSI在机器学习中没有CSI的优势

另一方面,通过确定无线分组[24]-[26]的飞行时间和到达角信息,对WiFi CSI进行几何分析,实现定位。在实际的室内环境中,噪声、偏移和信号衰落问题对使用这种分析方法找到发射机设备的真实位置至关重要。系统SpotFi[25]和Chronos[26]分别实现了0.4 m和0.6 m的定位精度。然而,为了获得如此精确的定位结果,它们需要极其精确的CSI相位初始校准。在现场部署中,根据参考收发机位置对及其天线布置,应事先研究所有CSI相位的噪声和偏移。此外,Chronos需要双向测量来消除无线电信号的偏移,这是不切实际的,因为系统必须控制发送设备,即移动设备。

为了在无需校准的情况下应对噪声、偏移和信号衰落,许多机器学习方法通过将复杂的CSI数据视为单一视图,成功地从该数据中找到发射设备位置。Wang等。[10],[11]和Li等。[12]利用基于受限玻尔兹曼机(restricted Boltzmann machine, RBM)的方法重建CSI数据,以更好地确定定位的似然。在[14]、[27]和[28]中提出了基于卷积神经网络(CNN)的方法。将连续的数据包连接为单个批次,形成二维CSI图像。然而,在无线定位中,系统能够逐包处理比批处理更可取。Zhou等人,[13]和Chen等人,[29]分别引入了基于svm的回归(SVR)和分类。Gao等人[30]采用迁移学习重建CSI数据,并应用增强KNN方法进行定位。为了提高点位分类的准确性,Tsai等人在[31]算法中引入了自编码器。在[32]经过深度神经网络(DNN)处理之前,采用预处理方法之一的主成分分析(PCA)对多维CSI进行降维。此外,Hsieh等人结合RSSI和CSI提出了多层感知器(MLP)和一维CNN。从无设备室内定位的角度来看,Sanam和Godrich[34]进行了典型相关分析(CCA)来对设备与人的位置进行分类,其中设备既不是发射器也不是接收器。

之前的几项工作的实验参数如表1所示。为了获得可靠的精度,它们只考虑在网格或线拓扑上进行定位,相对于拓扑的大小,它们需要较多的训练点。另一方面,Gao等人的[30]和Tsai等人的[31]通过定义与训练点对应的测试点来达到亚米级精度,但并不实用。

B. Our Contributions

这项工作追求一种先进的实用定位精度,以扩大无线电定位在复杂平面图上的应用范围。为了在有走廊的真实建筑环境中构建一个实用的定位学习系统,本文提出了一种基于多视角CSI数据的监督学习系统VSDL(view-selective deep learning )。VSDL通过使用VDL生成潜在特征,并剔除了多个视图中的无信息视图使得回归性能得到很大提高。将VSDL应用于具有相似或较少训练点和不对应的测试点的复杂建筑物实验。VSDL实现了1.28 m的定位精度,比在我们的测试平台上应用的任何其他基于机器学习的工作的精度高出30%以上。据我们所知,这是第一个将变分推理应用于基于csi的WiFi定位的方法,并构建了一个在广泛和复杂环境中进行定位的实用系统。此外,该系统的应用可以扩展到有信息和无信息视图共存的多视图数据的一般监督学习。

II. CSI 前期准备和数据收集

在wi - fi网络中,根据多输入多输出(MIMO)空中接口的IEEE 802.11a/g/n/ac标准,可以通过分析到达一个接入点(AP)的多个接收天线的无线分组的CSIs来实现设备定位。在使用Intel WiFi link (IWL) 5300网络接口控制器(NIC)的实验中,物理层API报告了一个复杂的CSI向量,其中30个子载波用于接收一个WiFi分组[35]的天线。多天线CSIs的相位差提供了接收到的数据包的到达角度,该角度是定位发射设备的关键信息。

分别表示分组相关的偏移量和噪声,即[37]。经验表明,这些偏移和噪声会使CSI相位产生较大的波动,难以用解析方法求解。在我们的变分推理方法中,CSI被映射为一个单位复数相量,该相量测量不同天线之间的CSI相位差

在这里,我们采用VDL来缓解CSI训练样本中的噪声和信号衰落问题,定义为x = [xm,i], m∈{1,…, M−1},i∈{1,…,I}。

为了在复杂区域构建实用的定位系统,需要考虑排除无信息的CSI视图。在由K个子区域组成的区域中可以部署多个ap,每个子区域中的ap集合构成CSI样本的视图。无论发射器位于何处,所有ap都能从它那里接收CSI,但只有某些ap集合具有信息CSI。应用深度学习对多个子区域的主导视图进行分类。

III. VARIATIONAL DEEP LEARNING:变分深度学习

IV. 定位:视图选择深度学习

图2所示。以两视图为例说明了两阶段VSDL系统设计。面向视图的变分深度网络(左灰框)由用于潜采样和回归的神经网络组成。视图分类回归网络(右灰框)由用于视图分类和所需回归的神经网络组成。

V. FIELD EXPERIMENT

VI. CONCLUSION

随着WiFi网络的无处不在,为匿名用户提供网络应用服务,WiFi设备定位成为一个非常有吸引力的研究领域,有望打开新的商业机会和技术挑战。WiFi定位技术由于采用了在多个ap上测量CSI的方法,其定位性能得到了突破性的提高。

本文介绍了一种机器学习设计,在多视图学习架构中非常有效地结合了VDL。本文报告了一个观察,在VDL中间层生成的潜向量形成了强大的特征行为,以提供有效视图选择的分类,大大提高了定位的准确性。

在复杂的野外实验中,VSDL系统的定位精度达到1.28 m,与已知最好的基于RBM的定位系统相比,定位精度提高了30%以上。VSDL充分利用了基于多视角回归的优势,完全实用,因此WiFi定位网络可以无限制地扩展,如在复杂的建筑结构中。在隐空间中提取特征来处理多视图VDL网络中的有信息和无信息视图的设计非常强大,可以应用于各种应用,而没有扩展性限制。

作为未来的工作,我们计划设计一个以无监督方式发现视图信息的定位系统。不同子区域的CSI数据可以通过不同的聚类算法进行聚类。由于从子区域生成的每个CSI簇主要由某个CSI视图进行回归,因此正在寻找簇并匹配其信息量大的CSI视图,而不需要对给定视图标签进行预分类。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值