Tiny Object Detection in Aerial Images论文简读

该文介绍了AI-TOD,一个专为航空图像中的微小物体检测设计的数据集,包含700,621个实例。相比现有数据集,AI-TOD的目标平均尺寸更小,更具挑战性。作者们建立了一个基准,评估了先进的物体检测器,并提出了M-CenterNet,一种提升微小目标检测性能的网络。实验显示,M-CenterNet在AP和oLRP指标上表现优越。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
code: https://github.com/jwwangchn/AI-TOD

文章目录

摘要

近年来,地球视觉中的目标探测取得了很大的进展。然而,航空图像中的微小物体检测仍然是一个非常具有挑战性的问题,因为微小物体包含的像素很小,很容易与背景混淆。为了推进航空图像中的微小物体检测研究,我们提出了一种新的航空图像中的微小物体检测数据集(AI-TOD)。具体来说,AI-TOD为280,36张航空图像的8个类别提供了700,621个物体实例。与现有的航空图像目标检测数据集相比,AI-TOD目标的平均大小约为12.8像素,比其他对象要小得多。为了建立一个在航空图像中的微小物体检测的基准,我们在我们的AI-TOD数据集上评估了最先进的物体探测器。实验结果表明,将这些方法直接应用于AI-TOD会产生次优的目标检测结果,因此需要设计新的微小目标检测检测器。因此,我们提出了一种基于多中心点的学习网络(M-CenterNet)来提高微小目标检测的定位性能,实验结果表明,该性能显著提高。

论文的贡献

  • 我们介绍了AI-TOD,一个用于航空图像中微小物体检测的数据集。此外,我们还通过几个基于cnn的对象检测器建立了一个相应的基准测试,并提供了AI-TOD数据集上最先进的检测器的概述。训练/验证图像和注释将被公开,并将建立一个在线基准来进行算法评估。
  • 我们提出了一种基于多中心点的学习网络(M-CenterNet)用于小目标检测,它在AP和oLRD数据集的oLRP指标上都获得了最先进的性能。
  • 在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值