使用robot_localization融合IMU数据和GPS数据

前言

现在我们要将 GPS 数据添加到车轮里程计和 IMU 数据中。这三个测量将通过使用 robots_localization 包进行融合。GPS 提供机器人相对于地球框架的位置。这是一个优点。然而,它也有一些缺点,包括:

  • 误差较大。然而,特殊类型的 GPS(例如 DGPS 和 RTK)误差要小得多,但价格昂贵。
  • 仅提供位置。GPS 本身不提供任何有关方向的信息。

当与车轮里程计和IMU数据融合时,可以克服GPS的大误差。

这篇博客将简单介绍下如何将 GPS 数据与车轮里程计和 IMU 数据融合。

坐标系

对于室内机器人来说,坐标系非常简单。机器人的“中心”是base_link。您的里程计源(通常是车轮编码器,通常与 IMU 合并)用于生成odom帧。然后你就有了建筑物的地图, AMCL等程序可以使用激光扫描数据将机器人与地图对齐,以从奥多姆到地图框的转换形式发布校正。地图框架是任意的,但参考建筑物的地图固定并在构建地图时设置。目标位姿通常在地图框中指定,因为它随着时间的推移和机器人的重新启动而保持一致。

对于户外机器人来说,它最终会变得更加复杂。base_link和odom帧与室内相同。

对于robots_localization,地图框原点是机

robot_localization是一个用于融合多种传感器数据的库,它可以将惯性测量单元(IMU)、全球定位系统(GPS轮式编码器(odom)的信息进行融合,从而提高机器人定位的准确性。 首先,IMU提供了机器人的加速度角速度等运动信息。通过测量机器人的加速度角速度,我们可以推算出机器人的姿态运动状态。然而,IMU数据容易受到噪声漂移的影响,导致定位的不准确。 其次,GPS可以提供机器人的位置速度信息。GPS通过接收卫星信号来确定机器人所在的地理位置。但是,GPS数据容易受到多路径效应、信号丢失以及环境遮挡的影响,导致定位误差较大。 最后,odom通过测量机器人的轮子转动情况来估计机器人的位姿变化。它可以提供较为精确的机器人姿态信息,但是,odom数据也容易受到轮胎滑动陀螺仪漂移等因素的影响,从而导致定位误差。 为了提高机器人的定位精确度,我们可以将这三种传感器的数据进行融合robot_localization库采用了扩展卡尔曼滤波(EKF)算法,通过将IMUGPSodom数据进行融合,可以减小各个传感器的误差,得到更准确的机器人定位信息。 具体而言,IMU的角速度数据可以用来补偿odom的角度误差,GPS可以提供全局定位信息来辅助融合结果,odom可以提供机器人的局部运动信息。通过对这些数据进行滤波优化,我们可以得到更准确、更稳定的机器人姿态位置估计。 总之,通过融合IMUGPSodom数据robot_localization库可以提高机器人定位的精确度鲁棒性,从而为机器人导航路径规划等任务提供更可靠的基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值