前言
现在我们要将 GPS 数据添加到车轮里程计和 IMU 数据中。这三个测量将通过使用 robots_localization 包进行融合。GPS 提供机器人相对于地球框架的位置。这是一个优点。然而,它也有一些缺点,包括:
- 误差较大。然而,特殊类型的 GPS(例如 DGPS 和 RTK)误差要小得多,但价格昂贵。
- 仅提供位置。GPS 本身不提供任何有关方向的信息。
当与车轮里程计和IMU数据融合时,可以克服GPS的大误差。
这篇博客将简单介绍下如何将 GPS 数据与车轮里程计和 IMU 数据融合。
坐标系
对于室内机器人来说,坐标系非常简单。机器人的“中心”是base_link。您的里程计源(通常是车轮编码器,通常与 IMU 合并)用于生成odom帧。然后你就有了建筑物的地图, AMCL等程序可以使用激光扫描数据将机器人与地图对齐,以从奥多姆到地图框的转换形式发布校正。地图框架是任意的,但参考建筑物的地图固定并在构建地图时设置。目标位姿通常在地图框中指定,因为它随着时间的推移和机器人的重新启动而保持一致。
对于户外机器人来说,它最终会变得更加复杂。base_link和odom帧与室内相同。
对于robots_localization,地图框原点是机