基于深度卷积神经网络的锂离子电池容量估计

  1. 引言

锂离子电池因其高能量密度和长循环寿命,在电子设备、电动汽车和能源存储系统中得到广泛应用。准确估计电池容量对于保证电池安全可靠运行至关重要。然而,传统的基于模型的方法需要大量物理知识或实验数据,而数据驱动方法则依赖大规模训练数据集。这些方法在实际应用中往往面临数据获取困难、计算复杂度高等问题。

本研究提出了一种名为DCNN-ETL的深度学习方法,结合深度卷积神经网络(Deep Convolutional Neural Network,DCNN)、迁移学习和集成学习,实现了基于小规模数据集的高精度在线电池容量估计。该方法旨在解决以下问题:

(1)如何在有限的训练数据条件下,实现准确的电池容量估计?

(2)如何利用已有的大规模数据集知识,提高小规模数据集上的学习效果?

(3)如何提高模型的泛化能力,使其适应不同类型和工作条件的电池?


 

  2. 研究方法

2.1 DCNN-ETL方法概述

DCNN-ETL方法主要包括以下四个步骤:

(1) 预训练:使用来自8个植入式锂离子电池的10年循环数据作为源数据集,预训练8个DCNN模型。
(2) 迁移学习:将预训练DCNN模型的学习参数迁移到目标任务,构建8个DCNN与迁移学习(DCNN with Transfer Learning,DCNN-TL)模型。
(3) 集成学习:将8个DCNN-TL模型集成,构建DCNN与集成学习和迁移学习(DCNN with Ensemble Learning and Transfer Learning,DCNN-ETL)模型。
(4) 在线推理:使用DCNN-ETL模型基于部分充电过程中的电压、电流和充电容量曲线,估计电池容量。

图1展示了一个时间序列输入示例,包括电池一次部分充电循环的电压、电流和充电容量曲线。输入矩阵大小固定为25×3,每列分别对应电压、电流和充电容量曲线的25个离散点值。

2.2 模型构建过程

(1) 预训练过程:
将源数据集分为8个互斥子集,对应8个植入式电池,进行8次训练-验证-测试序列,得到8个预训练DCNN模型。图2展示了源数据集分割和8个DCNN模型预训练的过程。

(2) 迁移学习过程:
将预训练DCNN模型的学习参数迁移到DCNN-TL模型,每个DCNN-TL模型包含5个卷积层和3个全连接层。图3展示了从第i个预训练DCNN模型向第i个DCNN-TL模型迁移学习参数的过程。

(3) 集成学习过程:
构建DCNN-ETL模型,包含8个DCNN-TL模型、1个全连接集成层和1个回归层。图4(a)展示了DCNN-ETL模型的整体结构,图4(b)展示了构成DCNN-ETL模型的单个DCNN-TL模型的架构。

  1. 实验数据与实施细节

3.1 循环数据

研究使用了两个数据集:

(1) 源数据集:8个植入式锂离子电池10年以上的长期循环数据,共25,338个样本。
(2) 目标数据集:NASA进展数据存储库中20个18650锂离子电池约5个月的短期循环数据,共525个样本。

表1总结了源数据集和目标数据集的样本大小、时间跨度、阴极和阳极材料信息。

目标数据集包含5个不同循环协议的电池组,每组4个电池。图6展示了5个电池组的容量衰减曲线,可以观察到同一协议组内电池也呈现不同的容量衰减行为。

3.2 模型实施细节

预训练DCNN模型和重新训练DCNN-ETL模型的主要参数设置如表3所示。预训练采用随机梯度下降(Stochastic Gradient Descent,SGD)法,mini-batch大小为128,初始学习率为0.01,每7个训练周期学习率减少5倍。DCNN-ETL模型重新训练采用0.001的学习率,训练50个周期。

表4详细列出了DCNN和DCNN-ETL模型的网络配置,包括各层的滤波器大小、核数量、步长和权重偏置数量。

  1. 实验结果与讨论

4.1 容量估计结果

研究比较了DCNN-ETL与随机森林(Random Forest,RF)回归、高斯过程(Gaussian Process,GP)回归、DCNN、DCNN-TL和DCNN与集成学习(DCNN with Ensemble Learning,DCNN-EL)等方法的性能。表5和图8展示了各方法在5次交叉验证中的均方根误差(Root Mean Square Error,RMSE)和最大误差(Maximum Error,MaxE)。

结果显示DCNN-ETL在总体RMSE(1.503%)和MaxE(9.505%)方面均优于其他方法。这表明DCNN-ETL方法在小规模数据集上也能提供准确的容量估计。

图9(a-c)展示了DCNN-ETL对容量衰减行为不同于其他电池的3个电池(2号、12号和13号电池)的估计结果。结果表明DCNN-ETL模型能够紧密跟踪容量衰减趋势,具有良好的泛化能力。图9(d)对比了不同深度学习模型的总体RMSE,DCNN-ETL表现出最高的准确性和稳定性。

4.2 迁移层数的影响

研究探讨了从预训练DCNN复制的层数对DCNN-TL准确性的影响。图10展示了总体测试RMSE随迁移层数变化的情况。结果显示随着迁移层数增加,网络性能先降低后提高,复制8层时DCNN-TL模型产生最低的总体测试RMSE,表明完全复制预训练模型参数能够获得最佳性能。

4.3 训练数据集大小的影响

研究构建了10个不同大小的新训练数据集,分析了训练数据集大小对DCNN-ETL性能的影响。图11展示了总体测试RMSE随训练样本数量变化的情况。结果表明随着训练数据集规模减小,迁移学习带来的性能改善更加明显。DCNN-ETL在样本数量为原始数据集1/1.5时就能收敛,而DCNN-EL需要3倍于原始数据集的样本量才能达到可接受的性能水平。这说明DCNN-ETL方法在处理小规模数据集时具有明显优势。

4.4 计算效率

表6比较了DCNN、DCNN-TL、DCNN-EL和DCNN-ETL在5次交叉验证中的平均计算时间。结果显示采用集成学习的深度学习模型(DCNN-EL和DCNN-ETL)的训练时间约为单个学习算法的10倍,但所有方法的测试时间都很短(小于0.05秒),表明深度学习适用于锂离子电池的在线容量估计。

  1. 结论与展望

本研究提出的DCNN-ETL方法结合迁移学习和集成学习,实现了基于小规模数据集的高精度锂离子电池容量在线估计。主要结论如下:

(1) DCNN-ETL在总体RMSE和MaxE方面均优于其他对比方法,表现出优异的准确性和鲁棒性。
(2) 迁移学习使复杂神经网络能够在小规模目标数据集上快速收敛并提高性能,特别是在训练数据集规模较小时效果显著。
(3) 集成学习提供了更准确和鲁棒的性能,有效降低了模型的运行间变异性。
(4) DCNN-ETL对容量衰减行为差异较大的电池也表现出良好的泛化能力。
(5) 完全复制预训练模型参数能够获得最佳性能,说明源任务和目标任务之间存在较高的相关性。

未来研究方向包括:

(1) 结合循环神经网络等方法突破固定输入大小的限制,提高模型对不同长度充放电数据的适应性。
(2) 探索该方法在不同材料组成电池数据上的适用性,扩大方法的应用范围。
(3) 量化DCNN各层特征的迁移程度,深入理解迁移学习在电池容量估计中的作用机制。
(4) 进一步优化模型结构和训练策略以提高计算效率,为实际部署提供更好的支持。

基于卷积神经网络锂离子电池SOH估计是一个比较复杂的应用,需要一定的深度学习和电池领域的知识。以下是一个基于卷积神经网络锂离子电池SOH估计的代码示例,供您参考: ```matlab % 加载数据 load('data.mat'); % 数据预处理 XTrain = cell(size(data, 1), 1); YTrain = cell(size(data, 1), 1); for i = 1:size(data, 1) XTrain{i} = data{i, 1}; YTrain{i} = data{i, 2}; end % 构建卷积神经网络模型 layers = [ sequenceInputLayer(1) convolution1dLayer(5, 16, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling1dLayer(2, 'Stride', 2) convolution1dLayer(5, 32, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling1dLayer(2, 'Stride', 2) convolution1dLayer(5, 64, 'Padding', 'same') batchNormalizationLayer reluLayer maxPooling1dLayer(2, 'Stride', 2) lstmLayer(128, 'OutputMode', 'last') fullyConnectedLayer(1) regressionLayer ]; % 设置训练选项 options = trainingOptions('adam', ... 'MaxEpochs', 50, ... 'MiniBatchSize', 32, ... 'InitialLearnRate', 0.001, ... 'GradientThreshold', 1, ... 'Shuffle', 'every-epoch', ... 'Verbose', false, ... 'Plots', 'training-progress'); % 训练模型 net = trainNetwork(XTrain, YTrain, layers, options); % 预测结果 YTest = predict(net, XTest); % 评估模型 rmse = sqrt(mean((YTest - YTestTrue).^2)); ``` 这段代码中,首先加载了数据,然后进行了数据预处理,将数据转换为网络输入所需的格式。接着,构建了一个卷积神经网络模型,包括卷积层、批归一化层、ReLU层、最大池化层、LSTM层和全连接层。然后,设置了训练选项,包括优化器、最大迭代次数、批次大小、学习率等。接着,使用训练数据对模型进行训练。最后,使用测试数据对模型进行预测,并计算了预测结果的均方根误差(RMSE)。 需要注意的是,这段代码只是一个示例,实际应用中需要根据具体情况进行修改和调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值