Frenet坐标系与平移坐标系(Parallel Transport Fram)关系和推导

Frenet坐标系

该坐标系以曲线的切线、主法线和负法线方向为坐标系的三个轴。定义曲线为参数曲线:
x ( t ) = [ x 1 ( t ) x 2 ( t ) x 3 ( t ) ] x(t)=[x_1(t) \quad x_2(t) \quad x_3(t)] x(t)=[x1(t)x2(t)x3(t)]
为了简单,将 x ( t ) x(t) x(t)简写为 x x x x ′ x' x表示 d x d t \frac{dx}{dt} dtdx
有三轴定义:
T = x ′ ∣ ∣ x ′ ∣ ∣ B = x ′ × x ′ ′ ∣ ∣ x ′ × x ′ ′ ∣ ∣ N = B × T \begin{aligned} T &= \frac{x'}{||x'||} \\ B &= \frac{x'\times x''}{||x'\times x''||} \\ N &= B \times T \end{aligned} TBN=∣∣x∣∣x=∣∣x×x′′∣∣x×x′′=B×T
式中 T T T为切线方向, N N N主法线方向, B B B为副法线方向。根据Frenet坐标系定义,有 [ T ′ N ′ B ′ ] = [ 0 κ 0 − κ 0 τ 0 − τ 0 ] [ T N B ] \begin{bmatrix}T' \\ N' \\ B'\end{bmatrix} = \begin{bmatrix}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{bmatrix} \begin{bmatrix}T \\ N \\ B\end{bmatrix} TNB = 0κ0κ0τ0τ0 TNB
**注意!**上式中的 T ′ T' T等是指 d T d s \frac{dT}{ds} dsdT,也即是对弧度的导数。为不引起歧义,利用链式法则转化为:
[ T ′ N ′ B ′ ] = ∣ ∣ x ′ ∣ ∣ [ 0 κ 0 − κ 0 τ 0 − τ 0 ] [ T N B ] \begin{bmatrix}T' \\ N' \\ B'\end{bmatrix} = ||x'|| \begin{bmatrix}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{bmatrix} \begin{bmatrix}T \\ N \\ B\end{bmatrix} TNB =∣∣x∣∣ 0κ0κ0τ0τ0 TNB
κ \kappa κ τ \tau τ的推导过程可见 推导过程,此处给出表达式
κ = ∣ ∣ x ′ × x ′ ′ ∣ ∣ ∣ ∣ x ′ ∣ ∣ 3 τ = ( x ′ × x ′ ′ ) ⋅ x ′ ′ ′ ∣ ∣ x ′ × x ′ ′ ∣ ∣ 2 \begin{aligned} \kappa &= \frac{||x'\times x''||}{||x'||^3} \\ \tau&=\frac{(x'\times x'')\cdot x'''}{||x'\times x''||^2}\end{aligned} κτ=∣∣x3∣∣x×x′′∣∣=∣∣x×x′′2(x×x′′)x′′′
至此,Frenet坐标系建立完成。若想了解更详细的推导过程,请见文末第二篇参考文献。

Parallel Transport

Frenet坐标系定义直观简单,但在曲率方向发生突变或曲率为0时无法定义,因此有学者提出了平移坐标系。平移坐标系也以切线为其中一个轴,然后任意指定另外两个正交单位向量作为另两轴。

平移坐标系基本形式为:
[ T ′ N 1 ′ N 2 ′ ] = ∣ ∣ x ′ ∣ ∣ [ 0 k 1 k 2 − k 1 0 0 − k 2 0 0 ] [ T N 1 N 2 ] \begin{bmatrix}T' \\ N_1' \\ N_2'\end{bmatrix} = ||x'|| \begin{bmatrix}0 & k_1 & k_2 \\ -k_1 & 0 & 0 \\ -k_2 & 0 & 0\end{bmatrix} \begin{bmatrix}T \\ N_1 \\ N_2 \end{bmatrix} TN1N2 =∣∣x∣∣ 0k1k2k100k200 TN1N2

κ \kappa κ 的关系

联系Frenet坐标系,根据 T ′ T' T的表达式,有:
k 1 N 1 + k 2 N 2 = κ N k 1 2 + k 2 2 = κ 2 \begin{aligned} k_1 N_1+k_2 N_2 &= \kappa N \\ k_1^2+k_2^2 &= \kappa^2\end{aligned} k1N1+k2N2k12+k22=κN=κ2

τ \tau τ的关系

有: N 1 ′ = − k 1 T N 2 ′ = − k 2 T \begin{aligned} N_1' &= -k_1 T \\ N_2' &= -k_2 T \end{aligned} N1N2=k1T=k2T
假设Frenet坐标系和平移坐标系的角度差为 θ \theta θ
[ N 1 N 2 ] = [ c o s θ − s i n θ s i n θ c o s θ ] [ N B ] \begin{bmatrix} N_1 \\ N_2\end{bmatrix} = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta\end{bmatrix} \begin{bmatrix} N \\ B\end{bmatrix} [N1N2]=[cosθsinθsinθcosθ][NB]
进而 { N 1 ′ = − θ ′ s i n θ N + c o s θ N ′ + θ ′ c o s θ B − s i n θ B ′ N 2 ′ = θ ′ c o s θ N + s i n θ N ′ − θ ′ s i n θ B + c o s θ B ′ \left\{\begin{aligned} N_1' &=-\theta' sin\theta N +cos\theta N' + \theta' cos\theta B - sin\theta B' \\ N_2' &=\theta' cos\theta N +sin\theta N' - \theta' sin\theta B + cos\theta B' \end{aligned}\right. {N1N2=θsinθN+cosθN+θcosθBsinθB=θcosθN+sinθNθsinθB+cosθB
{ − k 1 ∣ ∣ x ′ ∣ ∣ c o s θ T = − θ ′ t a n θ N + N ′ + θ ′ B − t a n θ B ′ − k 2 ∣ ∣ x ′ ∣ ∣ s i n θ T = θ ′ t a n − 1 θ N + θ N ′ − θ ′ B + t a n − 1 θ B ′ \left\{\begin{aligned} -\frac{k_1}{||x'||cos\theta} T&=-\theta' tan\theta N + N' + \theta' B - tan\theta B' \\ -\frac{k_2}{||x'||sin\theta} T&=\theta' tan^{-1}\theta N +\theta N' - \theta' B + tan^{-1}\theta B' \end{aligned}\right. ∣∣x∣∣cosθk1T∣∣x∣∣sinθk2T=θtanθN+N+θBtanθB=θtan1θN+θNθB+tan1θB
上下相减:
T ∣ ∣ x ′ ∣ ∣ ( − k 1 c o s θ + k 2 s i n θ ) = − θ ′ N ( t a n θ + 1 t a n θ ) − τ ∣ ∣ x ′ ∣ ∣ N ( t a n θ + 1 t a n θ ) \frac{T}{||x'||}(-\frac{k_1}{cos\theta}+\frac{k_2}{sin\theta})=-\theta'N(tan\theta+\frac{1}{tan\theta})-\frac{\tau}{||x'||} N(tan\theta + \frac{1}{tan\theta}) ∣∣x∣∣T(cosθk1+sinθk2)=θN(tanθ+tanθ1)∣∣x∣∣τN(tanθ+tanθ1)
由于 T T T N N N垂直,因此,结合与 κ \kappa κ的关系,有:
k 1 = κ c o s θ k 2 = κ s i n θ \begin{aligned} k_1=\kappa cos\theta \\ k_2=\kappa sin\theta \end{aligned} k1=κcosθk2=κsinθ
且: θ ′ = − τ ∣ ∣ x ′ ∣ ∣ \theta'=-\frac{\tau}{||x'||} θ=∣∣x∣∣τ
此处 θ ′ = d θ d t \theta'=\frac{d\theta}{dt} θ=dtdθ,可得 d θ d s = − τ \frac{d\theta}{ds}=-\tau dsdθ=τ
若设置起始时刻 θ = θ 0 \theta=\theta_0 θ=θ0 θ − θ 0 \theta - \theta_0 θθ0的物理含义为坐标系在切线方向上旋转的总角度。

仿真效果

参考文献中第一篇有离散情况下平移坐标系的应用方法。
在这里插入图片描述

问题

实际上可以发现,当
k 1 = − κ c o s θ k 2 = − κ s i n θ \begin{aligned} k_1=-\kappa cos\theta \\ k_2=-\kappa sin\theta \end{aligned} k1=κcosθk2=κsinθ
时,条件同样满足,然而此时切向量的旋转方向是错误的。因此如果根据定义式计算平移坐标系,还需要根据曲率半径方向来确定真正的符号。

[1]: Hanson, Andrew J. and Hui Ma. “Parallel Transport Approach to Curve Framing.” (1995).
[2]: https://physics.fjfi.cvut.cz/publications/mf/2016/bp_mf_16_Zahradova.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值