Frenet坐标系
该坐标系以曲线的切线、主法线和负法线方向为坐标系的三个轴。定义曲线为参数曲线:
x
(
t
)
=
[
x
1
(
t
)
x
2
(
t
)
x
3
(
t
)
]
x(t)=[x_1(t) \quad x_2(t) \quad x_3(t)]
x(t)=[x1(t)x2(t)x3(t)]
为了简单,将
x
(
t
)
x(t)
x(t)简写为
x
x
x,
x
′
x'
x′表示
d
x
d
t
\frac{dx}{dt}
dtdx。
有三轴定义:
T
=
x
′
∣
∣
x
′
∣
∣
B
=
x
′
×
x
′
′
∣
∣
x
′
×
x
′
′
∣
∣
N
=
B
×
T
\begin{aligned} T &= \frac{x'}{||x'||} \\ B &= \frac{x'\times x''}{||x'\times x''||} \\ N &= B \times T \end{aligned}
TBN=∣∣x′∣∣x′=∣∣x′×x′′∣∣x′×x′′=B×T
式中
T
T
T为切线方向,
N
N
N主法线方向,
B
B
B为副法线方向。根据Frenet坐标系定义,有
[
T
′
N
′
B
′
]
=
[
0
κ
0
−
κ
0
τ
0
−
τ
0
]
[
T
N
B
]
\begin{bmatrix}T' \\ N' \\ B'\end{bmatrix} = \begin{bmatrix}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{bmatrix} \begin{bmatrix}T \\ N \\ B\end{bmatrix}
T′N′B′
=
0−κ0κ0−τ0τ0
TNB
**注意!**上式中的
T
′
T'
T′等是指
d
T
d
s
\frac{dT}{ds}
dsdT,也即是对弧度的导数。为不引起歧义,利用链式法则转化为:
[
T
′
N
′
B
′
]
=
∣
∣
x
′
∣
∣
[
0
κ
0
−
κ
0
τ
0
−
τ
0
]
[
T
N
B
]
\begin{bmatrix}T' \\ N' \\ B'\end{bmatrix} = ||x'|| \begin{bmatrix}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{bmatrix} \begin{bmatrix}T \\ N \\ B\end{bmatrix}
T′N′B′
=∣∣x′∣∣
0−κ0κ0−τ0τ0
TNB
κ
\kappa
κ和
τ
\tau
τ的推导过程可见 推导过程,此处给出表达式
κ
=
∣
∣
x
′
×
x
′
′
∣
∣
∣
∣
x
′
∣
∣
3
τ
=
(
x
′
×
x
′
′
)
⋅
x
′
′
′
∣
∣
x
′
×
x
′
′
∣
∣
2
\begin{aligned} \kappa &= \frac{||x'\times x''||}{||x'||^3} \\ \tau&=\frac{(x'\times x'')\cdot x'''}{||x'\times x''||^2}\end{aligned}
κτ=∣∣x′∣∣3∣∣x′×x′′∣∣=∣∣x′×x′′∣∣2(x′×x′′)⋅x′′′
至此,Frenet坐标系建立完成。若想了解更详细的推导过程,请见文末第二篇参考文献。
Parallel Transport
Frenet坐标系定义直观简单,但在曲率方向发生突变或曲率为0时无法定义,因此有学者提出了平移坐标系。平移坐标系也以切线为其中一个轴,然后任意指定另外两个正交单位向量作为另两轴。
平移坐标系基本形式为:
[
T
′
N
1
′
N
2
′
]
=
∣
∣
x
′
∣
∣
[
0
k
1
k
2
−
k
1
0
0
−
k
2
0
0
]
[
T
N
1
N
2
]
\begin{bmatrix}T' \\ N_1' \\ N_2'\end{bmatrix} = ||x'|| \begin{bmatrix}0 & k_1 & k_2 \\ -k_1 & 0 & 0 \\ -k_2 & 0 & 0\end{bmatrix} \begin{bmatrix}T \\ N_1 \\ N_2 \end{bmatrix}
T′N1′N2′
=∣∣x′∣∣
0−k1−k2k100k200
TN1N2
与 κ \kappa κ 的关系
联系Frenet坐标系,根据
T
′
T'
T′的表达式,有:
k
1
N
1
+
k
2
N
2
=
κ
N
k
1
2
+
k
2
2
=
κ
2
\begin{aligned} k_1 N_1+k_2 N_2 &= \kappa N \\ k_1^2+k_2^2 &= \kappa^2\end{aligned}
k1N1+k2N2k12+k22=κN=κ2
与 τ \tau τ的关系
有:
N
1
′
=
−
k
1
T
N
2
′
=
−
k
2
T
\begin{aligned} N_1' &= -k_1 T \\ N_2' &= -k_2 T \end{aligned}
N1′N2′=−k1T=−k2T
假设Frenet坐标系和平移坐标系的角度差为
θ
\theta
θ:
[
N
1
N
2
]
=
[
c
o
s
θ
−
s
i
n
θ
s
i
n
θ
c
o
s
θ
]
[
N
B
]
\begin{bmatrix} N_1 \\ N_2\end{bmatrix} = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta\end{bmatrix} \begin{bmatrix} N \\ B\end{bmatrix}
[N1N2]=[cosθsinθ−sinθcosθ][NB]
进而
{
N
1
′
=
−
θ
′
s
i
n
θ
N
+
c
o
s
θ
N
′
+
θ
′
c
o
s
θ
B
−
s
i
n
θ
B
′
N
2
′
=
θ
′
c
o
s
θ
N
+
s
i
n
θ
N
′
−
θ
′
s
i
n
θ
B
+
c
o
s
θ
B
′
\left\{\begin{aligned} N_1' &=-\theta' sin\theta N +cos\theta N' + \theta' cos\theta B - sin\theta B' \\ N_2' &=\theta' cos\theta N +sin\theta N' - \theta' sin\theta B + cos\theta B' \end{aligned}\right.
{N1′N2′=−θ′sinθN+cosθN′+θ′cosθB−sinθB′=θ′cosθN+sinθN′−θ′sinθB+cosθB′
{
−
k
1
∣
∣
x
′
∣
∣
c
o
s
θ
T
=
−
θ
′
t
a
n
θ
N
+
N
′
+
θ
′
B
−
t
a
n
θ
B
′
−
k
2
∣
∣
x
′
∣
∣
s
i
n
θ
T
=
θ
′
t
a
n
−
1
θ
N
+
θ
N
′
−
θ
′
B
+
t
a
n
−
1
θ
B
′
\left\{\begin{aligned} -\frac{k_1}{||x'||cos\theta} T&=-\theta' tan\theta N + N' + \theta' B - tan\theta B' \\ -\frac{k_2}{||x'||sin\theta} T&=\theta' tan^{-1}\theta N +\theta N' - \theta' B + tan^{-1}\theta B' \end{aligned}\right.
⎩
⎨
⎧−∣∣x′∣∣cosθk1T−∣∣x′∣∣sinθk2T=−θ′tanθN+N′+θ′B−tanθB′=θ′tan−1θN+θN′−θ′B+tan−1θB′
上下相减:
T
∣
∣
x
′
∣
∣
(
−
k
1
c
o
s
θ
+
k
2
s
i
n
θ
)
=
−
θ
′
N
(
t
a
n
θ
+
1
t
a
n
θ
)
−
τ
∣
∣
x
′
∣
∣
N
(
t
a
n
θ
+
1
t
a
n
θ
)
\frac{T}{||x'||}(-\frac{k_1}{cos\theta}+\frac{k_2}{sin\theta})=-\theta'N(tan\theta+\frac{1}{tan\theta})-\frac{\tau}{||x'||} N(tan\theta + \frac{1}{tan\theta})
∣∣x′∣∣T(−cosθk1+sinθk2)=−θ′N(tanθ+tanθ1)−∣∣x′∣∣τN(tanθ+tanθ1)
由于
T
T
T和
N
N
N垂直,因此,结合与
κ
\kappa
κ的关系,有:
k
1
=
κ
c
o
s
θ
k
2
=
κ
s
i
n
θ
\begin{aligned} k_1=\kappa cos\theta \\ k_2=\kappa sin\theta \end{aligned}
k1=κcosθk2=κsinθ
且:
θ
′
=
−
τ
∣
∣
x
′
∣
∣
\theta'=-\frac{\tau}{||x'||}
θ′=−∣∣x′∣∣τ
此处
θ
′
=
d
θ
d
t
\theta'=\frac{d\theta}{dt}
θ′=dtdθ,可得
d
θ
d
s
=
−
τ
\frac{d\theta}{ds}=-\tau
dsdθ=−τ
若设置起始时刻
θ
=
θ
0
\theta=\theta_0
θ=θ0,
θ
−
θ
0
\theta - \theta_0
θ−θ0的物理含义为坐标系在切线方向上旋转的总角度。
仿真效果
参考文献中第一篇有离散情况下平移坐标系的应用方法。
问题
实际上可以发现,当
k
1
=
−
κ
c
o
s
θ
k
2
=
−
κ
s
i
n
θ
\begin{aligned} k_1=-\kappa cos\theta \\ k_2=-\kappa sin\theta \end{aligned}
k1=−κcosθk2=−κsinθ
时,条件同样满足,然而此时切向量的旋转方向是错误的。因此如果根据定义式计算平移坐标系,还需要根据曲率半径方向来确定真正的符号。
[1]: Hanson, Andrew J. and Hui Ma. “Parallel Transport Approach to Curve Framing.” (1995).
[2]: https://physics.fjfi.cvut.cz/publications/mf/2016/bp_mf_16_Zahradova.pdf