极坐标系(polar coordinates)
极坐标系是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。
这样,平面上任一点P的位置就可以用线段OP的长度r以及从Ox到OP的角度θ来确定,有序数对(r, θ)就称为P点的极坐标,记为P(r, θ);r称为P点的极径,θ称为P点的极角。
二维旋转矩阵的推导
{ x = r c o s φ y = r s i n φ \left\{ \begin{aligned} x=rcos\varphi\\ y=rsin\varphi \end{aligned} \right. {x=rcosφy=rsinφ
{ x ′ = r c o s ( φ + θ ) = r c o s φ c o s θ − r s i n φ s i n θ = x c o s θ − y s i n θ y ′ = r s i n ( φ + θ ) = r s i n φ c o s θ + r c o s φ s i n θ = y c o s θ + x s i n θ \left\{ \begin{aligned} x'=rcos(\varphi+\theta)=rcos\varphi cos\theta - rsin\varphi sin\theta = xcos\theta -ysin\theta \\ y'=rsin(\varphi+\theta)=rsin\varphi cos\theta + rcos\varphi sin\theta = ycos\theta +xsin\theta \end{aligned} \right. {x′=rcos(φ+θ)=rcosφcosθ−rsinφsinθ=xcosθ−ysinθy′=rsin(φ+θ)=rsinφcosθ+rcosφsinθ=ycosθ+xsinθ
得出
(
x
′
y
′
)
=
[
c
o
s
θ
−
s
i
n
θ
s
i
n
θ
c
o
s
θ
]
(
x
y
)
\begin{pmatrix} x'\\y' \end{pmatrix}= \begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta \end{bmatrix} \begin{pmatrix} x\\y \end{pmatrix}
(x′y′)=[cosθsinθ−sinθcosθ](xy)
得出旋转矩阵为
[
c
o
s
θ
−
s
i
n
θ
s
i
n
θ
c
o
s
θ
]
\begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta \end{bmatrix}
[cosθsinθ−sinθcosθ]
三维旋转矩阵
上面是二维的旋转,但上面那种情况放在3维中其实就是绕z轴旋转。
那么在三维中很简单,比如你绕x轴转,你就将线性矩阵Ax=b的x由
(
x
,
y
)
T
(x,y)^T
(x,y)T换为
(
y
,
z
)
T
(y,z)^T
(y,z)T
放入三维旋转矩阵即:
[
1
0
0
0
cos
θ
−
sin
θ
0
sin
θ
cos
θ
]
\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & - \sin \theta\\ 0 & \sin \theta & \cos \theta \end{bmatrix}
⎣⎡1000cosθsinθ0−sinθcosθ⎦⎤
绕y也是一样的