旋转矩阵的推导

极坐标系(polar coordinates)

请添加图片描述

极坐标系是指在平面内由极点、极轴和极径组成的坐标系。在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。
这样,平面上任一点P的位置就可以用线段OP的长度r以及从Ox到OP的角度θ来确定,有序数对(r, θ)就称为P点的极坐标,记为P(r, θ);r称为P点的极径,θ称为P点的极角。

二维旋转矩阵的推导

{ x = r c o s φ y = r s i n φ \left\{ \begin{aligned} x=rcos\varphi\\ y=rsin\varphi \end{aligned} \right. {x=rcosφy=rsinφ

{ x ′ = r c o s ( φ + θ ) = r c o s φ c o s θ − r s i n φ s i n θ = x c o s θ − y s i n θ y ′ = r s i n ( φ + θ ) = r s i n φ c o s θ + r c o s φ s i n θ = y c o s θ + x s i n θ \left\{ \begin{aligned} x'=rcos(\varphi+\theta)=rcos\varphi cos\theta - rsin\varphi sin\theta = xcos\theta -ysin\theta \\ y'=rsin(\varphi+\theta)=rsin\varphi cos\theta + rcos\varphi sin\theta = ycos\theta +xsin\theta \end{aligned} \right. {x=rcos(φ+θ)=rcosφcosθrsinφsinθ=xcosθysinθy=rsin(φ+θ)=rsinφcosθ+rcosφsinθ=ycosθ+xsinθ

得出
( x ′ y ′ ) = [ c o s θ − s i n θ s i n θ c o s θ ] ( x y ) \begin{pmatrix} x'\\y' \end{pmatrix}= \begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta \end{bmatrix} \begin{pmatrix} x\\y \end{pmatrix} (xy)=[cosθsinθsinθcosθ](xy)
得出旋转矩阵为
[ c o s θ − s i n θ s i n θ c o s θ ] \begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta \end{bmatrix} [cosθsinθsinθcosθ]

三维旋转矩阵

上面是二维的旋转,但上面那种情况放在3维中其实就是绕z轴旋转。
那么在三维中很简单,比如你绕x轴转,你就将线性矩阵Ax=b的x由 ( x , y ) T (x,y)^T (x,y)T换为 ( y , z ) T (y,z)^T (y,z)T
放入三维旋转矩阵即:
[ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & - \sin \theta\\ 0 & \sin \theta & \cos \theta \end{bmatrix} 1000cosθsinθ0sinθcosθ
绕y也是一样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

orbitgw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值