模型参数量与显存占用分析

常用模型参数量-显存占用估计统计如下表:

精度&显存模型占用量
32bit(FP32)-单精度16bit(FP16/BF16)-半精度8bit(int8)4bit(int4)
参数量
14byte2byte1byte0.5byte
1B4GB2GB1GB0.5GB
2B8GB4GB2GB1GB
7B28GB14GB7GB3.5GB
13B52GB26GB13GB6.5GB
32B128GB64GB32GB16GB
70B280GB140GB70GB35GB

训练显存

由于反向传播、Adam优化和Transformer架构等因素,保守估计,训练所需的显存是模型参数所占显存的4倍(1x 为模型 、1x 为梯度、1~2x 为优化器)。

注1:使用AdamW优化器,显存需求为2x;使用SGD优化器,显存需求为1x

为了确保训练期间模型收敛,参数类型一般不能是int8或int4。通常使用FP32或量化到BF16。

例如,使用单浮点精度FP32训练一个1B模型大约需要16GB(4GB x 4)。

  • 对于float32类型:1B(10亿参数)x 4(float的字节数)+ 1*4 + 2*4 = 4*4=16G
  • 对于half/BF16类型参数:1B(10亿参数)x 2(每个BF16参数字节数)x 4 = 8 GB

推理显存

训练所需的显存是模型参数所占显存的1倍(1x 为模型)。

例如,使用单浮点精度FP32训练一个1B模型大约需要4GB(4GB x 1)。

  • 对于float32类型:1B(10亿参数)x 4(float的字节数)=4G

 transformer系列5---transformer显存占用分析_transformer 占用显存大小-CSDN博客

https://cuiyuhao.com/posts/c87c0f5d/

<think>嗯,用户想了解如何使用Llama Factory微调32B模型。首先,我需要确认Llama Factory是什么。我记得它是一个用于微调LLM的开源库,支持多种模型和数据集。接下来,32B模型应该是指参数量320亿的大模型,比如LLaMA或类似架构。用户可能需要知道准备步骤、配置方法、训练技巧等。 用户可能是研究人员或开发者,想在自己的任务上微调大模型。需要明确他们是否有足够的计算资源,比如多块GPU,因为32B模型显存要求很高。可能要考虑参数高效微调方法,比如LoRA,以减少资源消耗。 需要分步骤说明:环境安装、数据准备、配置调整、启动训练和验证。同时,注意事项部分要强调资源需求、过拟合风险和分布式训练。可能还需要提醒使用最新版本和社区支持。 需要检查是否有遗漏的步骤,比如数据格式转换或者参数配置细节。确保使用中文,术语准确,结构清晰。可能用户会遇到显存不足的问题,所以建议具体配置,比如使用多少块A100,以及如何调整batch size和梯度累积。另外,验证部分要说明如何加载模型进行评估,确保示例代码正确。</think>以下是对使用Llama Factory微调32B模型的分步说明: --- ### **一、准备工作** 1. **硬件要求** - GPU配置:至少8×A100 80G(推荐使用NVLink互联) - 显存需求:约320GB显存(使用LoRA可降至约160GB) - 存储:准备1TB以上SSD用于存放模型和数据集 2. **环境搭建** ```bash conda create -n llama_factory python=3.10 conda activate llama_factory git clone https://github.com/hiyouga/LLaMA-Factory cd LLaMA-Factory pip install -r requirements.txt ``` --- ### **二、数据准备** 1. **格式规范** ```json [ { "instruction": "生成广告文案", "input": "产品:智能手表,目标人群:运动爱好者", "output": "突破极限,XX智能手表..." }, // 至少准备1000条样本 ] ``` 2. **预处理脚本** ```python from llama_factory.data import make_dataset make_dataset.convert_to_sharegpt("raw_data.json", "processed_data.json") ``` --- ### **三、配置调整** 1. **关键参数设置(train_args.yaml)** ```yaml model_name_or_path: meta-llama/Llama-2-32b use_peft: true # 启用参数高效微调 peft_type: lora # 使用LoRA方法 lora_rank: 64 # 平衡效果显存 per_device_train_batch_size: 2 gradient_accumulation_steps: 16 learning_rate: 1e-5 num_train_epochs: 3 ``` --- ### **四、启动训练** 1. **分布式训练命令** ```bash torchrun --nproc_per_node=8 src/train_bash.py \ --stage sft \ --model_name_or_path meta-llama/Llama-2-32b \ --do_train \ --dataset_dir processed_data \ --output_dir outputs/llama2-32b-sft \ --overwrite_cache \ --fp16 ``` --- ### **五、验证部署** 1. **效果评估** ```python from transformers import pipeline generator = pipeline("text-generation", model="outputs/llama2-32b-sft", device_map="auto") print(generator("生成关于新能源车的文案:", max_length=200)) ``` --- ### **注意事项** 1. **显存优化技巧** - 启用`flash_attention_2`可减少15%显存占用 - 使用`gradient_checkpointing`梯度检查点技术 2. **常见问题** - OOM错误:尝试降低`per_device_train_batch_size`,增加`gradient_accumulation_steps` - 收敛缓慢:尝试`learning_rate`在1e-6到3e-5之间调整 --- ### **进阶方案** 对于企业级需求可考虑: 1. 混合精度训练(`bf16` + `tf32`) 2. 3D并行训练(数据+流水线+张量并行) 3. 使用Megatron-LM集成方案 建议访问Llama Factory官方GitHub仓库查看最新更新: https://github.com/hiyouga/LLaMA-Factory
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值