大型语言模型(LLMs)中词汇量大小对于模型扩展规律的有哪些影响呢,之前的研究往往集中于模型参数数量和训练数据量,而忽略了词汇表大小的角色。论文中研究人员探索了三种评估最优词汇量的方法:基于计算力的IsoFLOPs分析、导数估算及损失函数参数拟合,这三种方法均表明,最优词汇量取决于计算资源,而且大模型应匹配大词汇量。现有的许多LLMs所使用的词汇量过小,例如,Llama2-70B模型的理想词汇量应为216K,远超其实际的32K。通过实验验证,当模型在不同计算预算下采用预测的最优词汇量时,其下游任务的表现普遍优于常用词汇量大小。例如,将词汇量从标准的32K增加到43K,就能在同等的计算量下,模型在ARC-Challenge上的性能从29.1提升至32.0。
1 三种预测计算最优词汇量的方法
1. 通过IsoFLOPs分析估计幂律:
(1)定义模型组:研究者定义了六个模型组,其中非词汇参数数量Nnv从3300万到11亿3千万不等。在每个组内,只改变词汇量V,从4000到96000不等,所有模型都在相同的FLOPs预算下进行评估。
(2)评估与选择:使用固定的数据集评估模型的归一化损失。从每种FLOPs预算下选取最小损失的点,这些点代表了计算最优的参数分配。
(3)假设与拟合:基于先前的研究,假设最优的词汇参数Nv与FLOPsC满足幂律关系,就像非词汇