将 Vision Mamba 和 LSTM 结合,以实现高效准确的空间时间预测

文章介绍了一种称为VMRNN(Vision Mamba RNN)的新模型,该模型通过整合Vision Mamba模块与长短期记忆网络(LSTM),以应对时空预测挑战,特别是在处理视频序列预测等任务时,能够有效地建模长依赖关系并保持计算效率。文章强调了传统的卷积神经网络(CNNs)和视觉变换器(ViTs)在处理此类任务时的局限性,如感受野受限及计算需求高,并展示了VMRNN在网络规模较小的情况下,在多种时空预测任务中取得了有竞争力的结果。

在这里插入图片描述

1 VMRNN的架构

一个基于VMRNN Cell的基本模型(VMRNN-B)和一个更深层的模型(VMRNN-D)。在每个时间步骤中,图像被分割为非重叠的补丁,并通过展平和初步线性转换进入后续处理阶段。

  • 1.VMRNN-B模型:

处理流程:VMRNN层接收嵌入后的图像patch以及前一时刻的状态信息(隐藏状态Ht-1和细胞状态Ct-1),进而生成当前的隐藏状态Ht和细胞状态Ct。

多用途隐藏状态:Ht被复制用于两个目的,一是送入重构层,二是与Ct一起为下一时间步的VMRNN层提供输入。

  • 2.VMRNN-D模型:

深度扩展:相比VMRNN-B,VMRNN-D包含更多的VMRNN单元,并引入了Patch Merging和Patch Expanding层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值